Metamath Proof Explorer


Theorem efgt1

Description: The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion efgt1
|- ( A e. RR+ -> 1 < ( exp ` A ) )

Proof

Step Hyp Ref Expression
1 1red
 |-  ( A e. RR+ -> 1 e. RR )
2 1re
 |-  1 e. RR
3 rpre
 |-  ( A e. RR+ -> A e. RR )
4 readdcl
 |-  ( ( 1 e. RR /\ A e. RR ) -> ( 1 + A ) e. RR )
5 2 3 4 sylancr
 |-  ( A e. RR+ -> ( 1 + A ) e. RR )
6 3 reefcld
 |-  ( A e. RR+ -> ( exp ` A ) e. RR )
7 ltaddrp
 |-  ( ( 1 e. RR /\ A e. RR+ ) -> 1 < ( 1 + A ) )
8 2 7 mpan
 |-  ( A e. RR+ -> 1 < ( 1 + A ) )
9 efgt1p
 |-  ( A e. RR+ -> ( 1 + A ) < ( exp ` A ) )
10 1 5 6 8 9 lttrd
 |-  ( A e. RR+ -> 1 < ( exp ` A ) )