Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
3 |
|
0nn0 |
|- 0 e. NN0 |
4 |
3
|
a1i |
|- ( A e. CC -> 0 e. NN0 ) |
5 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
6 |
|
0z |
|- 0 e. ZZ |
7 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
8 |
7
|
eftval |
|- ( 0 e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) ) |
9 |
3 8
|
ax-mp |
|- ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) |
10 |
|
eft0val |
|- ( A e. CC -> ( ( A ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
11 |
9 10
|
eqtrid |
|- ( A e. CC -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = 1 ) |
12 |
6 11
|
seq1i |
|- ( A e. CC -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 0 ) = 1 ) |
13 |
|
1nn0 |
|- 1 e. NN0 |
14 |
7
|
eftval |
|- ( 1 e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = ( ( A ^ 1 ) / ( ! ` 1 ) ) ) |
15 |
13 14
|
ax-mp |
|- ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = ( ( A ^ 1 ) / ( ! ` 1 ) ) |
16 |
|
fac1 |
|- ( ! ` 1 ) = 1 |
17 |
16
|
oveq2i |
|- ( ( A ^ 1 ) / ( ! ` 1 ) ) = ( ( A ^ 1 ) / 1 ) |
18 |
|
exp1 |
|- ( A e. CC -> ( A ^ 1 ) = A ) |
19 |
18
|
oveq1d |
|- ( A e. CC -> ( ( A ^ 1 ) / 1 ) = ( A / 1 ) ) |
20 |
|
div1 |
|- ( A e. CC -> ( A / 1 ) = A ) |
21 |
19 20
|
eqtrd |
|- ( A e. CC -> ( ( A ^ 1 ) / 1 ) = A ) |
22 |
17 21
|
eqtrid |
|- ( A e. CC -> ( ( A ^ 1 ) / ( ! ` 1 ) ) = A ) |
23 |
15 22
|
eqtrid |
|- ( A e. CC -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = A ) |
24 |
2 4 5 12 23
|
seqp1d |
|- ( A e. CC -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 1 ) = ( 1 + A ) ) |
25 |
1 24
|
syl |
|- ( A e. RR+ -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 1 ) = ( 1 + A ) ) |
26 |
|
id |
|- ( A e. RR+ -> A e. RR+ ) |
27 |
13
|
a1i |
|- ( A e. RR+ -> 1 e. NN0 ) |
28 |
7 26 27
|
effsumlt |
|- ( A e. RR+ -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 1 ) < ( exp ` A ) ) |
29 |
25 28
|
eqbrtrrd |
|- ( A e. RR+ -> ( 1 + A ) < ( exp ` A ) ) |