| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 | 1 2 3 4 | efgtf |  |-  ( X e. W -> ( ( T ` X ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` X ) : ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 6 | 5 | simpld |  |-  ( X e. W -> ( T ` X ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) ) | 
						
							| 7 | 6 | oveqd |  |-  ( X e. W -> ( N ( T ` X ) A ) = ( N ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) A ) ) | 
						
							| 8 |  | oteq1 |  |-  ( a = N -> <. a , a , <" b ( M ` b ) "> >. = <. N , a , <" b ( M ` b ) "> >. ) | 
						
							| 9 |  | oteq2 |  |-  ( a = N -> <. N , a , <" b ( M ` b ) "> >. = <. N , N , <" b ( M ` b ) "> >. ) | 
						
							| 10 | 8 9 | eqtrd |  |-  ( a = N -> <. a , a , <" b ( M ` b ) "> >. = <. N , N , <" b ( M ` b ) "> >. ) | 
						
							| 11 | 10 | oveq2d |  |-  ( a = N -> ( X splice <. a , a , <" b ( M ` b ) "> >. ) = ( X splice <. N , N , <" b ( M ` b ) "> >. ) ) | 
						
							| 12 |  | id |  |-  ( b = A -> b = A ) | 
						
							| 13 |  | fveq2 |  |-  ( b = A -> ( M ` b ) = ( M ` A ) ) | 
						
							| 14 | 12 13 | s2eqd |  |-  ( b = A -> <" b ( M ` b ) "> = <" A ( M ` A ) "> ) | 
						
							| 15 | 14 | oteq3d |  |-  ( b = A -> <. N , N , <" b ( M ` b ) "> >. = <. N , N , <" A ( M ` A ) "> >. ) | 
						
							| 16 | 15 | oveq2d |  |-  ( b = A -> ( X splice <. N , N , <" b ( M ` b ) "> >. ) = ( X splice <. N , N , <" A ( M ` A ) "> >. ) ) | 
						
							| 17 |  | eqid |  |-  ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) | 
						
							| 18 |  | ovex |  |-  ( X splice <. N , N , <" A ( M ` A ) "> >. ) e. _V | 
						
							| 19 | 11 16 17 18 | ovmpo |  |-  ( ( N e. ( 0 ... ( # ` X ) ) /\ A e. ( I X. 2o ) ) -> ( N ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) A ) = ( X splice <. N , N , <" A ( M ` A ) "> >. ) ) | 
						
							| 20 | 7 19 | sylan9eq |  |-  ( ( X e. W /\ ( N e. ( 0 ... ( # ` X ) ) /\ A e. ( I X. 2o ) ) ) -> ( N ( T ` X ) A ) = ( X splice <. N , N , <" A ( M ` A ) "> >. ) ) | 
						
							| 21 | 20 | 3impb |  |-  ( ( X e. W /\ N e. ( 0 ... ( # ` X ) ) /\ A e. ( I X. 2o ) ) -> ( N ( T ` X ) A ) = ( X splice <. N , N , <" A ( M ` A ) "> >. ) ) |