Step |
Hyp |
Ref |
Expression |
1 |
|
efi4p.1 |
|- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
4 |
2 3
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
5 |
1
|
ef4p |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
6 |
4 5
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
7 |
|
ax-1cn |
|- 1 e. CC |
8 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
9 |
7 4 8
|
sylancr |
|- ( A e. CC -> ( 1 + ( _i x. A ) ) e. CC ) |
10 |
4
|
sqcld |
|- ( A e. CC -> ( ( _i x. A ) ^ 2 ) e. CC ) |
11 |
10
|
halfcld |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) e. CC ) |
12 |
|
3nn0 |
|- 3 e. NN0 |
13 |
|
expcl |
|- ( ( ( _i x. A ) e. CC /\ 3 e. NN0 ) -> ( ( _i x. A ) ^ 3 ) e. CC ) |
14 |
4 12 13
|
sylancl |
|- ( A e. CC -> ( ( _i x. A ) ^ 3 ) e. CC ) |
15 |
|
6cn |
|- 6 e. CC |
16 |
|
6re |
|- 6 e. RR |
17 |
|
6pos |
|- 0 < 6 |
18 |
16 17
|
gt0ne0ii |
|- 6 =/= 0 |
19 |
|
divcl |
|- ( ( ( ( _i x. A ) ^ 3 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
20 |
15 18 19
|
mp3an23 |
|- ( ( ( _i x. A ) ^ 3 ) e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
21 |
14 20
|
syl |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
22 |
9 11 21
|
addassd |
|- ( A e. CC -> ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( 1 + ( _i x. A ) ) + ( ( ( ( _i x. A ) ^ 2 ) / 2 ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) ) |
23 |
7
|
a1i |
|- ( A e. CC -> 1 e. CC ) |
24 |
23 4 11 21
|
add4d |
|- ( A e. CC -> ( ( 1 + ( _i x. A ) ) + ( ( ( ( _i x. A ) ^ 2 ) / 2 ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) = ( ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) ) |
25 |
|
2nn0 |
|- 2 e. NN0 |
26 |
|
mulexp |
|- ( ( _i e. CC /\ A e. CC /\ 2 e. NN0 ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
27 |
2 25 26
|
mp3an13 |
|- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
28 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
29 |
28
|
oveq1i |
|- ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) |
30 |
29
|
a1i |
|- ( A e. CC -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) ) |
31 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
32 |
31
|
mulm1d |
|- ( A e. CC -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
33 |
27 30 32
|
3eqtrd |
|- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) |
34 |
33
|
oveq1d |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
35 |
|
2cn |
|- 2 e. CC |
36 |
|
2ne0 |
|- 2 =/= 0 |
37 |
|
divneg |
|- ( ( ( A ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
38 |
35 36 37
|
mp3an23 |
|- ( ( A ^ 2 ) e. CC -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
39 |
31 38
|
syl |
|- ( A e. CC -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
40 |
34 39
|
eqtr4d |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) = -u ( ( A ^ 2 ) / 2 ) ) |
41 |
40
|
oveq2d |
|- ( A e. CC -> ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) = ( 1 + -u ( ( A ^ 2 ) / 2 ) ) ) |
42 |
31
|
halfcld |
|- ( A e. CC -> ( ( A ^ 2 ) / 2 ) e. CC ) |
43 |
|
negsub |
|- ( ( 1 e. CC /\ ( ( A ^ 2 ) / 2 ) e. CC ) -> ( 1 + -u ( ( A ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
44 |
7 42 43
|
sylancr |
|- ( A e. CC -> ( 1 + -u ( ( A ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
45 |
41 44
|
eqtrd |
|- ( A e. CC -> ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
46 |
|
mulexp |
|- ( ( _i e. CC /\ A e. CC /\ 3 e. NN0 ) -> ( ( _i x. A ) ^ 3 ) = ( ( _i ^ 3 ) x. ( A ^ 3 ) ) ) |
47 |
2 12 46
|
mp3an13 |
|- ( A e. CC -> ( ( _i x. A ) ^ 3 ) = ( ( _i ^ 3 ) x. ( A ^ 3 ) ) ) |
48 |
|
i3 |
|- ( _i ^ 3 ) = -u _i |
49 |
48
|
oveq1i |
|- ( ( _i ^ 3 ) x. ( A ^ 3 ) ) = ( -u _i x. ( A ^ 3 ) ) |
50 |
47 49
|
eqtrdi |
|- ( A e. CC -> ( ( _i x. A ) ^ 3 ) = ( -u _i x. ( A ^ 3 ) ) ) |
51 |
50
|
oveq1d |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) = ( ( -u _i x. ( A ^ 3 ) ) / 6 ) ) |
52 |
|
expcl |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) |
53 |
12 52
|
mpan2 |
|- ( A e. CC -> ( A ^ 3 ) e. CC ) |
54 |
|
negicn |
|- -u _i e. CC |
55 |
15 18
|
pm3.2i |
|- ( 6 e. CC /\ 6 =/= 0 ) |
56 |
|
divass |
|- ( ( -u _i e. CC /\ ( A ^ 3 ) e. CC /\ ( 6 e. CC /\ 6 =/= 0 ) ) -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
57 |
54 55 56
|
mp3an13 |
|- ( ( A ^ 3 ) e. CC -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
58 |
53 57
|
syl |
|- ( A e. CC -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
59 |
|
divcl |
|- ( ( ( A ^ 3 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 3 ) / 6 ) e. CC ) |
60 |
15 18 59
|
mp3an23 |
|- ( ( A ^ 3 ) e. CC -> ( ( A ^ 3 ) / 6 ) e. CC ) |
61 |
53 60
|
syl |
|- ( A e. CC -> ( ( A ^ 3 ) / 6 ) e. CC ) |
62 |
|
mulneg12 |
|- ( ( _i e. CC /\ ( ( A ^ 3 ) / 6 ) e. CC ) -> ( -u _i x. ( ( A ^ 3 ) / 6 ) ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
63 |
2 61 62
|
sylancr |
|- ( A e. CC -> ( -u _i x. ( ( A ^ 3 ) / 6 ) ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
64 |
51 58 63
|
3eqtrd |
|- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
65 |
64
|
oveq2d |
|- ( A e. CC -> ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
66 |
61
|
negcld |
|- ( A e. CC -> -u ( ( A ^ 3 ) / 6 ) e. CC ) |
67 |
|
adddi |
|- ( ( _i e. CC /\ A e. CC /\ -u ( ( A ^ 3 ) / 6 ) e. CC ) -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
68 |
2 67
|
mp3an1 |
|- ( ( A e. CC /\ -u ( ( A ^ 3 ) / 6 ) e. CC ) -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
69 |
66 68
|
mpdan |
|- ( A e. CC -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
70 |
|
negsub |
|- ( ( A e. CC /\ ( ( A ^ 3 ) / 6 ) e. CC ) -> ( A + -u ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 6 ) ) ) |
71 |
61 70
|
mpdan |
|- ( A e. CC -> ( A + -u ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 6 ) ) ) |
72 |
71
|
oveq2d |
|- ( A e. CC -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) |
73 |
65 69 72
|
3eqtr2d |
|- ( A e. CC -> ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) |
74 |
45 73
|
oveq12d |
|- ( A e. CC -> ( ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) |
75 |
22 24 74
|
3eqtrd |
|- ( A e. CC -> ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) |
76 |
75
|
oveq1d |
|- ( A e. CC -> ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
77 |
6 76
|
eqtrd |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |