| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 2 |
1
|
recld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
| 3 |
2
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. CC ) |
| 4 |
|
efsub |
|- ( ( ( log ` A ) e. CC /\ ( Re ` ( log ` A ) ) e. CC ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
| 5 |
1 3 4
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
| 6 |
|
ax-icn |
|- _i e. CC |
| 7 |
1
|
imcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
| 9 |
|
mulcl |
|- ( ( _i e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
| 10 |
6 8 9
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
| 11 |
1
|
replimd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) = ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 12 |
3 10 11
|
mvrladdd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( log ` A ) - ( Re ` ( log ` A ) ) ) = ( _i x. ( Im ` ( log ` A ) ) ) ) |
| 13 |
12
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 14 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
| 15 |
|
relog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
| 16 |
15
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) = ( exp ` ( log ` ( abs ` A ) ) ) ) |
| 17 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 18 |
17
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 19 |
18
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 20 |
|
absrpcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 21 |
20
|
rpne0d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 22 |
|
eflog |
|- ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) -> ( exp ` ( log ` ( abs ` A ) ) ) = ( abs ` A ) ) |
| 23 |
19 21 22
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` ( abs ` A ) ) ) = ( abs ` A ) ) |
| 24 |
16 23
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) = ( abs ` A ) ) |
| 25 |
14 24
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |
| 26 |
5 13 25
|
3eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |