| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
atancl |
|- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
| 3 |
|
mulcl |
|- ( ( _i e. CC /\ ( arctan ` A ) e. CC ) -> ( _i x. ( arctan ` A ) ) e. CC ) |
| 4 |
1 2 3
|
sylancr |
|- ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) e. CC ) |
| 5 |
|
efcl |
|- ( ( _i x. ( arctan ` A ) ) e. CC -> ( exp ` ( _i x. ( arctan ` A ) ) ) e. CC ) |
| 6 |
4 5
|
syl |
|- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) e. CC ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
atandm2 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 9 |
8
|
simp1bi |
|- ( A e. dom arctan -> A e. CC ) |
| 10 |
9
|
sqcld |
|- ( A e. dom arctan -> ( A ^ 2 ) e. CC ) |
| 11 |
|
addcl |
|- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 + ( A ^ 2 ) ) e. CC ) |
| 12 |
7 10 11
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) e. CC ) |
| 13 |
12
|
sqrtcld |
|- ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC ) |
| 14 |
12
|
sqsqrtd |
|- ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) = ( 1 + ( A ^ 2 ) ) ) |
| 15 |
|
atandm4 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |
| 16 |
15
|
simprbi |
|- ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) =/= 0 ) |
| 17 |
14 16
|
eqnetrd |
|- ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 ) |
| 18 |
|
sqne0 |
|- ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) |
| 19 |
13 18
|
syl |
|- ( A e. dom arctan -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) |
| 20 |
17 19
|
mpbid |
|- ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) |
| 21 |
6 13 20
|
divcan4d |
|- ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( exp ` ( _i x. ( arctan ` A ) ) ) ) |
| 22 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 23 |
12 16
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 + ( A ^ 2 ) ) ) e. CC ) |
| 24 |
|
mulcl |
|- ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 + ( A ^ 2 ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) |
| 25 |
22 23 24
|
sylancr |
|- ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) |
| 26 |
|
efadd |
|- ( ( ( _i x. ( arctan ` A ) ) e. CC /\ ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) ) |
| 27 |
4 25 26
|
syl2anc |
|- ( A e. dom arctan -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) ) |
| 28 |
|
2cn |
|- 2 e. CC |
| 29 |
28
|
a1i |
|- ( A e. dom arctan -> 2 e. CC ) |
| 30 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 31 |
1 9 30
|
sylancr |
|- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 32 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 33 |
7 31 32
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 34 |
8
|
simp3bi |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 35 |
33 34
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 36 |
29 35 4
|
subdid |
|- ( A e. dom arctan -> ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) = ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( 2 x. ( _i x. ( arctan ` A ) ) ) ) ) |
| 37 |
|
atanval |
|- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 38 |
37
|
oveq2d |
|- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 39 |
1
|
a1i |
|- ( A e. dom arctan -> _i e. CC ) |
| 40 |
29 39 2
|
mulassd |
|- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( 2 x. ( _i x. ( arctan ` A ) ) ) ) |
| 41 |
|
halfcl |
|- ( _i e. CC -> ( _i / 2 ) e. CC ) |
| 42 |
1 41
|
ax-mp |
|- ( _i / 2 ) e. CC |
| 43 |
28 1 42
|
mulassi |
|- ( ( 2 x. _i ) x. ( _i / 2 ) ) = ( 2 x. ( _i x. ( _i / 2 ) ) ) |
| 44 |
28 1 42
|
mul12i |
|- ( 2 x. ( _i x. ( _i / 2 ) ) ) = ( _i x. ( 2 x. ( _i / 2 ) ) ) |
| 45 |
|
2ne0 |
|- 2 =/= 0 |
| 46 |
1 28 45
|
divcan2i |
|- ( 2 x. ( _i / 2 ) ) = _i |
| 47 |
46
|
oveq2i |
|- ( _i x. ( 2 x. ( _i / 2 ) ) ) = ( _i x. _i ) |
| 48 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 49 |
47 48
|
eqtri |
|- ( _i x. ( 2 x. ( _i / 2 ) ) ) = -u 1 |
| 50 |
43 44 49
|
3eqtri |
|- ( ( 2 x. _i ) x. ( _i / 2 ) ) = -u 1 |
| 51 |
50
|
oveq1i |
|- ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 52 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 53 |
7 31 52
|
sylancr |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 54 |
8
|
simp2bi |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 55 |
53 54
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 56 |
55 35
|
subcld |
|- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 57 |
56
|
mulm1d |
|- ( A e. dom arctan -> ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 58 |
51 57
|
eqtrid |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 59 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
| 60 |
59
|
a1i |
|- ( A e. dom arctan -> ( 2 x. _i ) e. CC ) |
| 61 |
42
|
a1i |
|- ( A e. dom arctan -> ( _i / 2 ) e. CC ) |
| 62 |
60 61 56
|
mulassd |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 63 |
55 35
|
negsubdi2d |
|- ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 64 |
58 62 63
|
3eqtr3d |
|- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 65 |
38 40 64
|
3eqtr3d |
|- ( A e. dom arctan -> ( 2 x. ( _i x. ( arctan ` A ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 66 |
65
|
oveq2d |
|- ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 67 |
|
mulcl |
|- ( ( 2 e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 68 |
28 35 67
|
sylancr |
|- ( A e. dom arctan -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 69 |
68 35 55
|
subsubd |
|- ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 70 |
35
|
2timesd |
|- ( A e. dom arctan -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 71 |
35 35 70
|
mvrladdd |
|- ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 72 |
71
|
oveq1d |
|- ( A e. dom arctan -> ( ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 73 |
|
atanlogadd |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 74 |
|
logef |
|- ( ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 75 |
73 74
|
syl |
|- ( A e. dom arctan -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 76 |
|
efadd |
|- ( ( ( log ` ( 1 + ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 77 |
35 55 76
|
syl2anc |
|- ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 78 |
|
eflog |
|- ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( 1 + ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
| 79 |
33 34 78
|
syl2anc |
|- ( A e. dom arctan -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
| 80 |
|
eflog |
|- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) |
| 81 |
53 54 80
|
syl2anc |
|- ( A e. dom arctan -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) |
| 82 |
79 81
|
oveq12d |
|- ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) |
| 83 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 84 |
83
|
a1i |
|- ( A e. dom arctan -> ( 1 ^ 2 ) = 1 ) |
| 85 |
|
sqmul |
|- ( ( _i e. CC /\ A e. CC ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 86 |
1 9 85
|
sylancr |
|- ( A e. dom arctan -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 87 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 88 |
87
|
oveq1i |
|- ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) |
| 89 |
10
|
mulm1d |
|- ( A e. dom arctan -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 90 |
88 89
|
eqtrid |
|- ( A e. dom arctan -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 91 |
86 90
|
eqtrd |
|- ( A e. dom arctan -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) |
| 92 |
84 91
|
oveq12d |
|- ( A e. dom arctan -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( 1 - -u ( A ^ 2 ) ) ) |
| 93 |
|
subsq |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) |
| 94 |
7 31 93
|
sylancr |
|- ( A e. dom arctan -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) |
| 95 |
|
subneg |
|- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - -u ( A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) |
| 96 |
7 10 95
|
sylancr |
|- ( A e. dom arctan -> ( 1 - -u ( A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) |
| 97 |
92 94 96
|
3eqtr3d |
|- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) = ( 1 + ( A ^ 2 ) ) ) |
| 98 |
77 82 97
|
3eqtrd |
|- ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( 1 + ( A ^ 2 ) ) ) |
| 99 |
98
|
fveq2d |
|- ( A e. dom arctan -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) |
| 100 |
75 99
|
eqtr3d |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) |
| 101 |
69 72 100
|
3eqtrd |
|- ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) |
| 102 |
36 66 101
|
3eqtrd |
|- ( A e. dom arctan -> ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) |
| 103 |
102
|
oveq1d |
|- ( A e. dom arctan -> ( ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( log ` ( 1 + ( A ^ 2 ) ) ) / 2 ) ) |
| 104 |
35 4
|
subcld |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) e. CC ) |
| 105 |
45
|
a1i |
|- ( A e. dom arctan -> 2 =/= 0 ) |
| 106 |
104 29 105
|
divcan3d |
|- ( A e. dom arctan -> ( ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) |
| 107 |
23 29 105
|
divrec2d |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( A ^ 2 ) ) ) / 2 ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 108 |
103 106 107
|
3eqtr3d |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 109 |
35 4 25
|
subaddd |
|- ( A e. dom arctan -> ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) <-> ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 110 |
108 109
|
mpbid |
|- ( A e. dom arctan -> ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 111 |
110
|
fveq2d |
|- ( A e. dom arctan -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 112 |
27 111
|
eqtr3d |
|- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 113 |
22
|
a1i |
|- ( A e. dom arctan -> ( 1 / 2 ) e. CC ) |
| 114 |
12 16 113
|
cxpefd |
|- ( A e. dom arctan -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) |
| 115 |
|
cxpsqrt |
|- ( ( 1 + ( A ^ 2 ) ) e. CC -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
| 116 |
12 115
|
syl |
|- ( A e. dom arctan -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
| 117 |
114 116
|
eqtr3d |
|- ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
| 118 |
117
|
oveq2d |
|- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 119 |
112 118 79
|
3eqtr3d |
|- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
| 120 |
119
|
oveq1d |
|- ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 121 |
21 120
|
eqtr3d |
|- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |