Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
recn |
|- ( B e. RR -> B e. CC ) |
3 |
|
efival |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
4 |
|
efival |
|- ( B e. CC -> ( exp ` ( _i x. B ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) |
5 |
3 4
|
eqeqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) |
6 |
1 2 5
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) |
7 |
|
recoscl |
|- ( A e. RR -> ( cos ` A ) e. RR ) |
8 |
|
resincl |
|- ( A e. RR -> ( sin ` A ) e. RR ) |
9 |
7 8
|
jca |
|- ( A e. RR -> ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) ) |
10 |
|
recoscl |
|- ( B e. RR -> ( cos ` B ) e. RR ) |
11 |
|
resincl |
|- ( B e. RR -> ( sin ` B ) e. RR ) |
12 |
10 11
|
jca |
|- ( B e. RR -> ( ( cos ` B ) e. RR /\ ( sin ` B ) e. RR ) ) |
13 |
|
cru |
|- ( ( ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) /\ ( ( cos ` B ) e. RR /\ ( sin ` B ) e. RR ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) |
14 |
9 12 13
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) |
15 |
6 14
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) |