| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 3 |  | efival |  |-  ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) | 
						
							| 4 |  | efival |  |-  ( B e. CC -> ( exp ` ( _i x. B ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) | 
						
							| 5 | 3 4 | eqeqan12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) | 
						
							| 6 | 1 2 5 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) | 
						
							| 7 |  | recoscl |  |-  ( A e. RR -> ( cos ` A ) e. RR ) | 
						
							| 8 |  | resincl |  |-  ( A e. RR -> ( sin ` A ) e. RR ) | 
						
							| 9 | 7 8 | jca |  |-  ( A e. RR -> ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) ) | 
						
							| 10 |  | recoscl |  |-  ( B e. RR -> ( cos ` B ) e. RR ) | 
						
							| 11 |  | resincl |  |-  ( B e. RR -> ( sin ` B ) e. RR ) | 
						
							| 12 | 10 11 | jca |  |-  ( B e. RR -> ( ( cos ` B ) e. RR /\ ( sin ` B ) e. RR ) ) | 
						
							| 13 |  | cru |  |-  ( ( ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) /\ ( ( cos ` B ) e. RR /\ ( sin ` B ) e. RR ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) | 
						
							| 14 | 9 12 13 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) | 
						
							| 15 | 6 14 | bitrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) |