Step |
Hyp |
Ref |
Expression |
1 |
|
efif1olem1.1 |
|- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
2 |
|
simprr |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y e. D ) |
3 |
2 1
|
eleqtrdi |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y e. ( A (,] ( A + ( 2 x. _pi ) ) ) ) |
4 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
5 |
|
simpl |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> A e. RR ) |
6 |
|
2re |
|- 2 e. RR |
7 |
|
pire |
|- _pi e. RR |
8 |
6 7
|
remulcli |
|- ( 2 x. _pi ) e. RR |
9 |
|
readdcl |
|- ( ( A e. RR /\ ( 2 x. _pi ) e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
10 |
5 8 9
|
sylancl |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
11 |
|
elioc2 |
|- ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( y e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( y e. RR /\ A < y /\ y <_ ( A + ( 2 x. _pi ) ) ) ) ) |
12 |
4 10 11
|
syl2an2r |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( y e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( y e. RR /\ A < y /\ y <_ ( A + ( 2 x. _pi ) ) ) ) ) |
13 |
3 12
|
mpbid |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( y e. RR /\ A < y /\ y <_ ( A + ( 2 x. _pi ) ) ) ) |
14 |
13
|
simp1d |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y e. RR ) |
15 |
|
simprl |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x e. D ) |
16 |
15 1
|
eleqtrdi |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x e. ( A (,] ( A + ( 2 x. _pi ) ) ) ) |
17 |
|
elioc2 |
|- ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) |
18 |
4 10 17
|
syl2an2r |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) |
19 |
16 18
|
mpbid |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) |
20 |
19
|
simp1d |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x e. RR ) |
21 |
|
readdcl |
|- ( ( x e. RR /\ ( 2 x. _pi ) e. RR ) -> ( x + ( 2 x. _pi ) ) e. RR ) |
22 |
20 8 21
|
sylancl |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( x + ( 2 x. _pi ) ) e. RR ) |
23 |
13
|
simp3d |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y <_ ( A + ( 2 x. _pi ) ) ) |
24 |
8
|
a1i |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( 2 x. _pi ) e. RR ) |
25 |
19
|
simp2d |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> A < x ) |
26 |
5 20 24 25
|
ltadd1dd |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( A + ( 2 x. _pi ) ) < ( x + ( 2 x. _pi ) ) ) |
27 |
14 10 22 23 26
|
lelttrd |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> y < ( x + ( 2 x. _pi ) ) ) |
28 |
14 24 20
|
ltsubaddd |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( ( y - ( 2 x. _pi ) ) < x <-> y < ( x + ( 2 x. _pi ) ) ) ) |
29 |
27 28
|
mpbird |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( y - ( 2 x. _pi ) ) < x ) |
30 |
|
readdcl |
|- ( ( y e. RR /\ ( 2 x. _pi ) e. RR ) -> ( y + ( 2 x. _pi ) ) e. RR ) |
31 |
14 8 30
|
sylancl |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( y + ( 2 x. _pi ) ) e. RR ) |
32 |
19
|
simp3d |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x <_ ( A + ( 2 x. _pi ) ) ) |
33 |
13
|
simp2d |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> A < y ) |
34 |
5 14 24 33
|
ltadd1dd |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( A + ( 2 x. _pi ) ) < ( y + ( 2 x. _pi ) ) ) |
35 |
20 10 31 32 34
|
lelttrd |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> x < ( y + ( 2 x. _pi ) ) ) |
36 |
20 14 24
|
absdifltd |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( ( abs ` ( x - y ) ) < ( 2 x. _pi ) <-> ( ( y - ( 2 x. _pi ) ) < x /\ x < ( y + ( 2 x. _pi ) ) ) ) ) |
37 |
29 35 36
|
mpbir2and |
|- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) |