Step |
Hyp |
Ref |
Expression |
1 |
|
efifo.1 |
|- F = ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |
2 |
|
efifo.2 |
|- C = ( `' abs " { 1 } ) |
3 |
|
ax-icn |
|- _i e. CC |
4 |
|
recn |
|- ( z e. RR -> z e. CC ) |
5 |
|
mulcl |
|- ( ( _i e. CC /\ z e. CC ) -> ( _i x. z ) e. CC ) |
6 |
3 4 5
|
sylancr |
|- ( z e. RR -> ( _i x. z ) e. CC ) |
7 |
|
efcl |
|- ( ( _i x. z ) e. CC -> ( exp ` ( _i x. z ) ) e. CC ) |
8 |
6 7
|
syl |
|- ( z e. RR -> ( exp ` ( _i x. z ) ) e. CC ) |
9 |
|
absefi |
|- ( z e. RR -> ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) |
10 |
|
absf |
|- abs : CC --> RR |
11 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
12 |
|
fniniseg |
|- ( abs Fn CC -> ( ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) <-> ( ( exp ` ( _i x. z ) ) e. CC /\ ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) ) ) |
13 |
10 11 12
|
mp2b |
|- ( ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) <-> ( ( exp ` ( _i x. z ) ) e. CC /\ ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) ) |
14 |
8 9 13
|
sylanbrc |
|- ( z e. RR -> ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) ) |
15 |
14 2
|
eleqtrrdi |
|- ( z e. RR -> ( exp ` ( _i x. z ) ) e. C ) |
16 |
1 15
|
fmpti |
|- F : RR --> C |
17 |
|
ffn |
|- ( F : RR --> C -> F Fn RR ) |
18 |
16 17
|
ax-mp |
|- F Fn RR |
19 |
|
frn |
|- ( F : RR --> C -> ran F C_ C ) |
20 |
16 19
|
ax-mp |
|- ran F C_ C |
21 |
|
df-ima |
|- ( F " ( 0 (,] ( 2 x. _pi ) ) ) = ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) |
22 |
1
|
reseq1i |
|- ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) |
23 |
|
0xr |
|- 0 e. RR* |
24 |
|
2re |
|- 2 e. RR |
25 |
|
pire |
|- _pi e. RR |
26 |
24 25
|
remulcli |
|- ( 2 x. _pi ) e. RR |
27 |
|
elioc2 |
|- ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR ) -> ( z e. ( 0 (,] ( 2 x. _pi ) ) <-> ( z e. RR /\ 0 < z /\ z <_ ( 2 x. _pi ) ) ) ) |
28 |
23 26 27
|
mp2an |
|- ( z e. ( 0 (,] ( 2 x. _pi ) ) <-> ( z e. RR /\ 0 < z /\ z <_ ( 2 x. _pi ) ) ) |
29 |
28
|
simp1bi |
|- ( z e. ( 0 (,] ( 2 x. _pi ) ) -> z e. RR ) |
30 |
29
|
ssriv |
|- ( 0 (,] ( 2 x. _pi ) ) C_ RR |
31 |
|
resmpt |
|- ( ( 0 (,] ( 2 x. _pi ) ) C_ RR -> ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) ) |
32 |
30 31
|
ax-mp |
|- ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) |
33 |
22 32
|
eqtri |
|- ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) |
34 |
33
|
rneqi |
|- ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) |
35 |
|
0re |
|- 0 e. RR |
36 |
|
eqid |
|- ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) |
37 |
26
|
recni |
|- ( 2 x. _pi ) e. CC |
38 |
37
|
addid2i |
|- ( 0 + ( 2 x. _pi ) ) = ( 2 x. _pi ) |
39 |
38
|
oveq2i |
|- ( 0 (,] ( 0 + ( 2 x. _pi ) ) ) = ( 0 (,] ( 2 x. _pi ) ) |
40 |
39
|
eqcomi |
|- ( 0 (,] ( 2 x. _pi ) ) = ( 0 (,] ( 0 + ( 2 x. _pi ) ) ) |
41 |
36 2 40
|
efif1o |
|- ( 0 e. RR -> ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C ) |
42 |
35 41
|
ax-mp |
|- ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C |
43 |
|
f1ofo |
|- ( ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C -> ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -onto-> C ) |
44 |
|
forn |
|- ( ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -onto-> C -> ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = C ) |
45 |
42 43 44
|
mp2b |
|- ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = C |
46 |
34 45
|
eqtri |
|- ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = C |
47 |
21 46
|
eqtri |
|- ( F " ( 0 (,] ( 2 x. _pi ) ) ) = C |
48 |
|
imassrn |
|- ( F " ( 0 (,] ( 2 x. _pi ) ) ) C_ ran F |
49 |
47 48
|
eqsstrri |
|- C C_ ran F |
50 |
20 49
|
eqssi |
|- ran F = C |
51 |
|
df-fo |
|- ( F : RR -onto-> C <-> ( F Fn RR /\ ran F = C ) ) |
52 |
18 50 51
|
mpbir2an |
|- F : RR -onto-> C |