Metamath Proof Explorer


Theorem efifo

Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Hypotheses efifo.1
|- F = ( z e. RR |-> ( exp ` ( _i x. z ) ) )
efifo.2
|- C = ( `' abs " { 1 } )
Assertion efifo
|- F : RR -onto-> C

Proof

Step Hyp Ref Expression
1 efifo.1
 |-  F = ( z e. RR |-> ( exp ` ( _i x. z ) ) )
2 efifo.2
 |-  C = ( `' abs " { 1 } )
3 ax-icn
 |-  _i e. CC
4 recn
 |-  ( z e. RR -> z e. CC )
5 mulcl
 |-  ( ( _i e. CC /\ z e. CC ) -> ( _i x. z ) e. CC )
6 3 4 5 sylancr
 |-  ( z e. RR -> ( _i x. z ) e. CC )
7 efcl
 |-  ( ( _i x. z ) e. CC -> ( exp ` ( _i x. z ) ) e. CC )
8 6 7 syl
 |-  ( z e. RR -> ( exp ` ( _i x. z ) ) e. CC )
9 absefi
 |-  ( z e. RR -> ( abs ` ( exp ` ( _i x. z ) ) ) = 1 )
10 absf
 |-  abs : CC --> RR
11 ffn
 |-  ( abs : CC --> RR -> abs Fn CC )
12 fniniseg
 |-  ( abs Fn CC -> ( ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) <-> ( ( exp ` ( _i x. z ) ) e. CC /\ ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) ) )
13 10 11 12 mp2b
 |-  ( ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) <-> ( ( exp ` ( _i x. z ) ) e. CC /\ ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) )
14 8 9 13 sylanbrc
 |-  ( z e. RR -> ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) )
15 14 2 eleqtrrdi
 |-  ( z e. RR -> ( exp ` ( _i x. z ) ) e. C )
16 1 15 fmpti
 |-  F : RR --> C
17 ffn
 |-  ( F : RR --> C -> F Fn RR )
18 16 17 ax-mp
 |-  F Fn RR
19 frn
 |-  ( F : RR --> C -> ran F C_ C )
20 16 19 ax-mp
 |-  ran F C_ C
21 df-ima
 |-  ( F " ( 0 (,] ( 2 x. _pi ) ) ) = ran ( F |` ( 0 (,] ( 2 x. _pi ) ) )
22 1 reseq1i
 |-  ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) )
23 0xr
 |-  0 e. RR*
24 2re
 |-  2 e. RR
25 pire
 |-  _pi e. RR
26 24 25 remulcli
 |-  ( 2 x. _pi ) e. RR
27 elioc2
 |-  ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR ) -> ( z e. ( 0 (,] ( 2 x. _pi ) ) <-> ( z e. RR /\ 0 < z /\ z <_ ( 2 x. _pi ) ) ) )
28 23 26 27 mp2an
 |-  ( z e. ( 0 (,] ( 2 x. _pi ) ) <-> ( z e. RR /\ 0 < z /\ z <_ ( 2 x. _pi ) ) )
29 28 simp1bi
 |-  ( z e. ( 0 (,] ( 2 x. _pi ) ) -> z e. RR )
30 29 ssriv
 |-  ( 0 (,] ( 2 x. _pi ) ) C_ RR
31 resmpt
 |-  ( ( 0 (,] ( 2 x. _pi ) ) C_ RR -> ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) )
32 30 31 ax-mp
 |-  ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) )
33 22 32 eqtri
 |-  ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) )
34 33 rneqi
 |-  ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) )
35 0re
 |-  0 e. RR
36 eqid
 |-  ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) )
37 26 recni
 |-  ( 2 x. _pi ) e. CC
38 37 addid2i
 |-  ( 0 + ( 2 x. _pi ) ) = ( 2 x. _pi )
39 38 oveq2i
 |-  ( 0 (,] ( 0 + ( 2 x. _pi ) ) ) = ( 0 (,] ( 2 x. _pi ) )
40 39 eqcomi
 |-  ( 0 (,] ( 2 x. _pi ) ) = ( 0 (,] ( 0 + ( 2 x. _pi ) ) )
41 36 2 40 efif1o
 |-  ( 0 e. RR -> ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C )
42 35 41 ax-mp
 |-  ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C
43 f1ofo
 |-  ( ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C -> ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -onto-> C )
44 forn
 |-  ( ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -onto-> C -> ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = C )
45 42 43 44 mp2b
 |-  ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = C
46 34 45 eqtri
 |-  ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = C
47 21 46 eqtri
 |-  ( F " ( 0 (,] ( 2 x. _pi ) ) ) = C
48 imassrn
 |-  ( F " ( 0 (,] ( 2 x. _pi ) ) ) C_ ran F
49 47 48 eqsstrri
 |-  C C_ ran F
50 20 49 eqssi
 |-  ran F = C
51 df-fo
 |-  ( F : RR -onto-> C <-> ( F Fn RR /\ ran F = C ) )
52 18 50 51 mpbir2an
 |-  F : RR -onto-> C