| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
|- _pi e. CC |
| 2 |
|
subcl |
|- ( ( A e. CC /\ _pi e. CC ) -> ( A - _pi ) e. CC ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. CC -> ( A - _pi ) e. CC ) |
| 4 |
|
efival |
|- ( ( A - _pi ) e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = ( ( cos ` ( A - _pi ) ) + ( _i x. ( sin ` ( A - _pi ) ) ) ) ) |
| 5 |
3 4
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = ( ( cos ` ( A - _pi ) ) + ( _i x. ( sin ` ( A - _pi ) ) ) ) ) |
| 6 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
| 9 |
|
mulcl |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
| 10 |
7 8 9
|
sylancr |
|- ( A e. CC -> ( _i x. ( sin ` A ) ) e. CC ) |
| 11 |
6 10
|
negdid |
|- ( A e. CC -> -u ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( -u ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) |
| 12 |
|
cosmpi |
|- ( A e. CC -> ( cos ` ( A - _pi ) ) = -u ( cos ` A ) ) |
| 13 |
|
sinmpi |
|- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
| 14 |
13
|
oveq2d |
|- ( A e. CC -> ( _i x. ( sin ` ( A - _pi ) ) ) = ( _i x. -u ( sin ` A ) ) ) |
| 15 |
|
mulneg2 |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 16 |
7 8 15
|
sylancr |
|- ( A e. CC -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 17 |
14 16
|
eqtrd |
|- ( A e. CC -> ( _i x. ( sin ` ( A - _pi ) ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 18 |
12 17
|
oveq12d |
|- ( A e. CC -> ( ( cos ` ( A - _pi ) ) + ( _i x. ( sin ` ( A - _pi ) ) ) ) = ( -u ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) |
| 19 |
11 18
|
eqtr4d |
|- ( A e. CC -> -u ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` ( A - _pi ) ) + ( _i x. ( sin ` ( A - _pi ) ) ) ) ) |
| 20 |
5 19
|
eqtr4d |
|- ( A e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = -u ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 21 |
|
efival |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 22 |
21
|
negeqd |
|- ( A e. CC -> -u ( exp ` ( _i x. A ) ) = -u ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 23 |
20 22
|
eqtr4d |
|- ( A e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = -u ( exp ` ( _i x. A ) ) ) |