Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
|- _pi e. CC |
2 |
|
efival |
|- ( _pi e. CC -> ( exp ` ( _i x. _pi ) ) = ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) ) |
3 |
1 2
|
ax-mp |
|- ( exp ` ( _i x. _pi ) ) = ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) |
4 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
5 |
|
sinpi |
|- ( sin ` _pi ) = 0 |
6 |
5
|
oveq2i |
|- ( _i x. ( sin ` _pi ) ) = ( _i x. 0 ) |
7 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
8 |
6 7
|
eqtri |
|- ( _i x. ( sin ` _pi ) ) = 0 |
9 |
4 8
|
oveq12i |
|- ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) = ( -u 1 + 0 ) |
10 |
|
neg1cn |
|- -u 1 e. CC |
11 |
10
|
addid1i |
|- ( -u 1 + 0 ) = -u 1 |
12 |
9 11
|
eqtri |
|- ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) = -u 1 |
13 |
3 12
|
eqtri |
|- ( exp ` ( _i x. _pi ) ) = -u 1 |