| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
|- _pi e. CC |
| 2 |
|
efival |
|- ( _pi e. CC -> ( exp ` ( _i x. _pi ) ) = ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( exp ` ( _i x. _pi ) ) = ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) |
| 4 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
| 5 |
|
sinpi |
|- ( sin ` _pi ) = 0 |
| 6 |
5
|
oveq2i |
|- ( _i x. ( sin ` _pi ) ) = ( _i x. 0 ) |
| 7 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
| 8 |
6 7
|
eqtri |
|- ( _i x. ( sin ` _pi ) ) = 0 |
| 9 |
4 8
|
oveq12i |
|- ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) = ( -u 1 + 0 ) |
| 10 |
|
neg1cn |
|- -u 1 e. CC |
| 11 |
10
|
addridi |
|- ( -u 1 + 0 ) = -u 1 |
| 12 |
9 11
|
eqtri |
|- ( ( cos ` _pi ) + ( _i x. ( sin ` _pi ) ) ) = -u 1 |
| 13 |
3 12
|
eqtri |
|- ( exp ` ( _i x. _pi ) ) = -u 1 |