| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 3 |
1 2
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 5 |
3 4
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 6 |
|
negicn |
|- -u _i e. CC |
| 7 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
| 8 |
6 7
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 9 |
|
efcl |
|- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 10 |
8 9
|
syl |
|- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 11 |
5 10
|
addcld |
|- ( A e. CC -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 12 |
5 10
|
subcld |
|- ( A e. CC -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 13 |
|
2cn |
|- 2 e. CC |
| 14 |
|
2ne0 |
|- 2 =/= 0 |
| 15 |
13 14
|
pm3.2i |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 16 |
|
divdir |
|- ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 17 |
15 16
|
mp3an3 |
|- ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 18 |
11 12 17
|
syl2anc |
|- ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 19 |
10 5
|
pncan3d |
|- ( A e. CC -> ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( exp ` ( _i x. A ) ) ) |
| 20 |
19
|
oveq2d |
|- ( A e. CC -> ( ( exp ` ( _i x. A ) ) + ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( _i x. A ) ) ) ) |
| 21 |
5 10 12
|
addassd |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( ( exp ` ( _i x. A ) ) + ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 22 |
5
|
2timesd |
|- ( A e. CC -> ( 2 x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( _i x. A ) ) ) ) |
| 23 |
20 21 22
|
3eqtr4d |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( 2 x. ( exp ` ( _i x. A ) ) ) ) |
| 24 |
23
|
oveq1d |
|- ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) ) |
| 25 |
|
divcan3 |
|- ( ( ( exp ` ( _i x. A ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
| 26 |
13 14 25
|
mp3an23 |
|- ( ( exp ` ( _i x. A ) ) e. CC -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
| 27 |
5 26
|
syl |
|- ( A e. CC -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
| 28 |
24 27
|
eqtr2d |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) ) |
| 29 |
|
cosval |
|- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 30 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
| 31 |
|
2muline0 |
|- ( 2 x. _i ) =/= 0 |
| 32 |
30 31
|
pm3.2i |
|- ( ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) |
| 33 |
|
div12 |
|- ( ( _i e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) ) -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
| 34 |
1 32 33
|
mp3an13 |
|- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
| 35 |
12 34
|
syl |
|- ( A e. CC -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
| 36 |
|
sinval |
|- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 37 |
36
|
oveq2d |
|- ( A e. CC -> ( _i x. ( sin ` A ) ) = ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) ) |
| 38 |
|
divrec |
|- ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
| 39 |
13 14 38
|
mp3an23 |
|- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
| 40 |
12 39
|
syl |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
| 41 |
1
|
mullidi |
|- ( 1 x. _i ) = _i |
| 42 |
41
|
oveq1i |
|- ( ( 1 x. _i ) / ( 2 x. _i ) ) = ( _i / ( 2 x. _i ) ) |
| 43 |
|
ine0 |
|- _i =/= 0 |
| 44 |
1 43
|
dividi |
|- ( _i / _i ) = 1 |
| 45 |
44
|
oveq2i |
|- ( ( 1 / 2 ) x. ( _i / _i ) ) = ( ( 1 / 2 ) x. 1 ) |
| 46 |
|
ax-1cn |
|- 1 e. CC |
| 47 |
46 13 1 1 14 43
|
divmuldivi |
|- ( ( 1 / 2 ) x. ( _i / _i ) ) = ( ( 1 x. _i ) / ( 2 x. _i ) ) |
| 48 |
45 47
|
eqtr3i |
|- ( ( 1 / 2 ) x. 1 ) = ( ( 1 x. _i ) / ( 2 x. _i ) ) |
| 49 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 50 |
49
|
mulridi |
|- ( ( 1 / 2 ) x. 1 ) = ( 1 / 2 ) |
| 51 |
48 50
|
eqtr3i |
|- ( ( 1 x. _i ) / ( 2 x. _i ) ) = ( 1 / 2 ) |
| 52 |
42 51
|
eqtr3i |
|- ( _i / ( 2 x. _i ) ) = ( 1 / 2 ) |
| 53 |
52
|
oveq2i |
|- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) |
| 54 |
40 53
|
eqtr4di |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
| 55 |
35 37 54
|
3eqtr4d |
|- ( A e. CC -> ( _i x. ( sin ` A ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 56 |
29 55
|
oveq12d |
|- ( A e. CC -> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 57 |
18 28 56
|
3eqtr4d |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |