Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|- _i e. CC |
2 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
3 |
1 2
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
4 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
5 |
3 4
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
6 |
|
negicn |
|- -u _i e. CC |
7 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
8 |
6 7
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) e. CC ) |
9 |
|
efcl |
|- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
10 |
8 9
|
syl |
|- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
11 |
5 10
|
addcld |
|- ( A e. CC -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) |
12 |
5 10
|
subcld |
|- ( A e. CC -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
13 |
|
2cn |
|- 2 e. CC |
14 |
|
2ne0 |
|- 2 =/= 0 |
15 |
13 14
|
pm3.2i |
|- ( 2 e. CC /\ 2 =/= 0 ) |
16 |
|
divdir |
|- ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
17 |
15 16
|
mp3an3 |
|- ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
18 |
11 12 17
|
syl2anc |
|- ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
19 |
10 5
|
pncan3d |
|- ( A e. CC -> ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( exp ` ( _i x. A ) ) ) |
20 |
19
|
oveq2d |
|- ( A e. CC -> ( ( exp ` ( _i x. A ) ) + ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( _i x. A ) ) ) ) |
21 |
5 10 12
|
addassd |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( ( exp ` ( _i x. A ) ) + ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) ) |
22 |
5
|
2timesd |
|- ( A e. CC -> ( 2 x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( _i x. A ) ) ) ) |
23 |
20 21 22
|
3eqtr4d |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( 2 x. ( exp ` ( _i x. A ) ) ) ) |
24 |
23
|
oveq1d |
|- ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) ) |
25 |
|
divcan3 |
|- ( ( ( exp ` ( _i x. A ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
26 |
13 14 25
|
mp3an23 |
|- ( ( exp ` ( _i x. A ) ) e. CC -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
27 |
5 26
|
syl |
|- ( A e. CC -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
28 |
24 27
|
eqtr2d |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) ) |
29 |
|
cosval |
|- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
30 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
31 |
|
2muline0 |
|- ( 2 x. _i ) =/= 0 |
32 |
30 31
|
pm3.2i |
|- ( ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) |
33 |
|
div12 |
|- ( ( _i e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) ) -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
34 |
1 32 33
|
mp3an13 |
|- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
35 |
12 34
|
syl |
|- ( A e. CC -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
36 |
|
sinval |
|- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
37 |
36
|
oveq2d |
|- ( A e. CC -> ( _i x. ( sin ` A ) ) = ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) ) |
38 |
|
divrec |
|- ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
39 |
13 14 38
|
mp3an23 |
|- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
40 |
12 39
|
syl |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
41 |
1
|
mulid2i |
|- ( 1 x. _i ) = _i |
42 |
41
|
oveq1i |
|- ( ( 1 x. _i ) / ( 2 x. _i ) ) = ( _i / ( 2 x. _i ) ) |
43 |
|
ine0 |
|- _i =/= 0 |
44 |
1 43
|
dividi |
|- ( _i / _i ) = 1 |
45 |
44
|
oveq2i |
|- ( ( 1 / 2 ) x. ( _i / _i ) ) = ( ( 1 / 2 ) x. 1 ) |
46 |
|
ax-1cn |
|- 1 e. CC |
47 |
46 13 1 1 14 43
|
divmuldivi |
|- ( ( 1 / 2 ) x. ( _i / _i ) ) = ( ( 1 x. _i ) / ( 2 x. _i ) ) |
48 |
45 47
|
eqtr3i |
|- ( ( 1 / 2 ) x. 1 ) = ( ( 1 x. _i ) / ( 2 x. _i ) ) |
49 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
50 |
49
|
mulid1i |
|- ( ( 1 / 2 ) x. 1 ) = ( 1 / 2 ) |
51 |
48 50
|
eqtr3i |
|- ( ( 1 x. _i ) / ( 2 x. _i ) ) = ( 1 / 2 ) |
52 |
42 51
|
eqtr3i |
|- ( _i / ( 2 x. _i ) ) = ( 1 / 2 ) |
53 |
52
|
oveq2i |
|- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) |
54 |
40 53
|
eqtr4di |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
55 |
35 37 54
|
3eqtr4d |
|- ( A e. CC -> ( _i x. ( sin ` A ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
56 |
29 55
|
oveq12d |
|- ( A e. CC -> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
57 |
18 28 56
|
3eqtr4d |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |