| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eflt |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> ( exp ` B ) < ( exp ` A ) ) ) |
| 2 |
1
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> ( exp ` B ) < ( exp ` A ) ) ) |
| 3 |
2
|
notbid |
|- ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> -. ( exp ` B ) < ( exp ` A ) ) ) |
| 4 |
|
lenlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
| 5 |
|
reefcl |
|- ( A e. RR -> ( exp ` A ) e. RR ) |
| 6 |
|
reefcl |
|- ( B e. RR -> ( exp ` B ) e. RR ) |
| 7 |
|
lenlt |
|- ( ( ( exp ` A ) e. RR /\ ( exp ` B ) e. RR ) -> ( ( exp ` A ) <_ ( exp ` B ) <-> -. ( exp ` B ) < ( exp ` A ) ) ) |
| 8 |
5 6 7
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` A ) <_ ( exp ` B ) <-> -. ( exp ` B ) < ( exp ` A ) ) ) |
| 9 |
3 4 8
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( exp ` A ) <_ ( exp ` B ) ) ) |