Step |
Hyp |
Ref |
Expression |
1 |
|
eflegeo.1 |
|- ( ph -> A e. RR ) |
2 |
|
eflegeo.2 |
|- ( ph -> 0 <_ A ) |
3 |
|
eflegeo.3 |
|- ( ph -> A < 1 ) |
4 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
5 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
6 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
7 |
6
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
8 |
7
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
9 |
|
reeftcl |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
10 |
1 9
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
11 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
12 |
|
eqid |
|- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
13 |
|
ovex |
|- ( A ^ k ) e. _V |
14 |
11 12 13
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
16 |
|
reexpcl |
|- ( ( A e. RR /\ k e. NN0 ) -> ( A ^ k ) e. RR ) |
17 |
1 16
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. RR ) |
18 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
19 |
18
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
20 |
19
|
nnred |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
21 |
1
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> A e. RR ) |
22 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
23 |
2
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> 0 <_ A ) |
24 |
21 22 23
|
expge0d |
|- ( ( ph /\ k e. NN0 ) -> 0 <_ ( A ^ k ) ) |
25 |
19
|
nnge1d |
|- ( ( ph /\ k e. NN0 ) -> 1 <_ ( ! ` k ) ) |
26 |
17 20 24 25
|
lemulge12d |
|- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) |
27 |
19
|
nngt0d |
|- ( ( ph /\ k e. NN0 ) -> 0 < ( ! ` k ) ) |
28 |
|
ledivmul |
|- ( ( ( A ^ k ) e. RR /\ ( A ^ k ) e. RR /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> ( ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) <-> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) ) |
29 |
17 17 20 27 28
|
syl112anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) <-> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) ) |
30 |
26 29
|
mpbird |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) ) |
31 |
1
|
recnd |
|- ( ph -> A e. CC ) |
32 |
6
|
efcllem |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
33 |
31 32
|
syl |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
34 |
1 2
|
absidd |
|- ( ph -> ( abs ` A ) = A ) |
35 |
34 3
|
eqbrtrd |
|- ( ph -> ( abs ` A ) < 1 ) |
36 |
31 35 15
|
geolim |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) |
37 |
|
seqex |
|- seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. _V |
38 |
|
ovex |
|- ( 1 / ( 1 - A ) ) e. _V |
39 |
37 38
|
breldm |
|- ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
40 |
36 39
|
syl |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
41 |
4 5 8 10 15 17 30 33 40
|
isumle |
|- ( ph -> sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) <_ sum_ k e. NN0 ( A ^ k ) ) |
42 |
|
efval |
|- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
43 |
31 42
|
syl |
|- ( ph -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
44 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
45 |
31 44
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
46 |
4 5 15 45 36
|
isumclim |
|- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |
47 |
46
|
eqcomd |
|- ( ph -> ( 1 / ( 1 - A ) ) = sum_ k e. NN0 ( A ^ k ) ) |
48 |
41 43 47
|
3brtr4d |
|- ( ph -> ( exp ` A ) <_ ( 1 / ( 1 - A ) ) ) |