Step |
Hyp |
Ref |
Expression |
1 |
|
dflog2 |
|- log = `' ( exp |` ran log ) |
2 |
1
|
fveq1i |
|- ( log ` A ) = ( `' ( exp |` ran log ) ` A ) |
3 |
2
|
fveq2i |
|- ( ( exp |` ran log ) ` ( log ` A ) ) = ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) |
4 |
|
logrncl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log ) |
5 |
4
|
fvresd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp |` ran log ) ` ( log ` A ) ) = ( exp ` ( log ` A ) ) ) |
6 |
|
eldifsn |
|- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
7 |
|
eff1o2 |
|- ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) |
8 |
|
f1ocnvfv2 |
|- ( ( ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) /\ A e. ( CC \ { 0 } ) ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A ) |
9 |
7 8
|
mpan |
|- ( A e. ( CC \ { 0 } ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A ) |
10 |
6 9
|
sylbir |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A ) |
11 |
3 5 10
|
3eqtr3a |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |