Metamath Proof Explorer


Theorem eflog

Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion eflog
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A )

Proof

Step Hyp Ref Expression
1 dflog2
 |-  log = `' ( exp |` ran log )
2 1 fveq1i
 |-  ( log ` A ) = ( `' ( exp |` ran log ) ` A )
3 2 fveq2i
 |-  ( ( exp |` ran log ) ` ( log ` A ) ) = ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) )
4 logrncl
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log )
5 4 fvresd
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( exp |` ran log ) ` ( log ` A ) ) = ( exp ` ( log ` A ) ) )
6 eldifsn
 |-  ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) )
7 eff1o2
 |-  ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } )
8 f1ocnvfv2
 |-  ( ( ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) /\ A e. ( CC \ { 0 } ) ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A )
9 7 8 mpan
 |-  ( A e. ( CC \ { 0 } ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A )
10 6 9 sylbir
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( exp |` ran log ) ` ( `' ( exp |` ran log ) ` A ) ) = A )
11 3 5 10 3eqtr3a
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A )