| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
| 2 |
|
efne0 |
|- ( A e. CC -> ( exp ` A ) =/= 0 ) |
| 3 |
1 2
|
logcld |
|- ( A e. CC -> ( log ` ( exp ` A ) ) e. CC ) |
| 4 |
|
efsub |
|- ( ( A e. CC /\ ( log ` ( exp ` A ) ) e. CC ) -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) ) |
| 5 |
3 4
|
mpdan |
|- ( A e. CC -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) ) |
| 6 |
|
eflog |
|- ( ( ( exp ` A ) e. CC /\ ( exp ` A ) =/= 0 ) -> ( exp ` ( log ` ( exp ` A ) ) ) = ( exp ` A ) ) |
| 7 |
1 2 6
|
syl2anc |
|- ( A e. CC -> ( exp ` ( log ` ( exp ` A ) ) ) = ( exp ` A ) ) |
| 8 |
7
|
oveq2d |
|- ( A e. CC -> ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` A ) ) ) |
| 9 |
1 2
|
dividd |
|- ( A e. CC -> ( ( exp ` A ) / ( exp ` A ) ) = 1 ) |
| 10 |
5 8 9
|
3eqtrd |
|- ( A e. CC -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 ) |
| 11 |
|
subcl |
|- ( ( A e. CC /\ ( log ` ( exp ` A ) ) e. CC ) -> ( A - ( log ` ( exp ` A ) ) ) e. CC ) |
| 12 |
3 11
|
mpdan |
|- ( A e. CC -> ( A - ( log ` ( exp ` A ) ) ) e. CC ) |
| 13 |
|
efeq1 |
|- ( ( A - ( log ` ( exp ` A ) ) ) e. CC -> ( ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 <-> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 14 |
12 13
|
syl |
|- ( A e. CC -> ( ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 <-> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 15 |
10 14
|
mpbid |
|- ( A e. CC -> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) |
| 16 |
|
ax-icn |
|- _i e. CC |
| 17 |
|
2cn |
|- 2 e. CC |
| 18 |
|
picn |
|- _pi e. CC |
| 19 |
17 18
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 20 |
16 19
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
| 21 |
20
|
a1i |
|- ( A e. CC -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
| 22 |
|
ine0 |
|- _i =/= 0 |
| 23 |
|
2ne0 |
|- 2 =/= 0 |
| 24 |
|
pire |
|- _pi e. RR |
| 25 |
|
pipos |
|- 0 < _pi |
| 26 |
24 25
|
gt0ne0ii |
|- _pi =/= 0 |
| 27 |
17 18 23 26
|
mulne0i |
|- ( 2 x. _pi ) =/= 0 |
| 28 |
16 19 22 27
|
mulne0i |
|- ( _i x. ( 2 x. _pi ) ) =/= 0 |
| 29 |
28
|
a1i |
|- ( A e. CC -> ( _i x. ( 2 x. _pi ) ) =/= 0 ) |
| 30 |
12 21 29
|
divcan2d |
|- ( A e. CC -> ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) = ( A - ( log ` ( exp ` A ) ) ) ) |
| 31 |
30
|
oveq2d |
|- ( A e. CC -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) = ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) ) |
| 32 |
|
pncan3 |
|- ( ( ( log ` ( exp ` A ) ) e. CC /\ A e. CC ) -> ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) = A ) |
| 33 |
3 32
|
mpancom |
|- ( A e. CC -> ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) = A ) |
| 34 |
31 33
|
eqtr2d |
|- ( A e. CC -> A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) |
| 35 |
|
oveq2 |
|- ( n = ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) = ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) |
| 36 |
35
|
oveq2d |
|- ( n = ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) |
| 37 |
36
|
rspceeqv |
|- ( ( ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ /\ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
| 38 |
15 34 37
|
syl2anc |
|- ( A e. CC -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
| 39 |
38
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
| 40 |
|
fveq2 |
|- ( ( exp ` A ) = B -> ( log ` ( exp ` A ) ) = ( log ` B ) ) |
| 41 |
40
|
oveq1d |
|- ( ( exp ` A ) = B -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
| 42 |
41
|
eqeq2d |
|- ( ( exp ` A ) = B -> ( A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 43 |
42
|
rexbidv |
|- ( ( exp ` A ) = B -> ( E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 44 |
39 43
|
syl5ibcom |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( exp ` A ) = B -> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 45 |
|
logcl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
| 46 |
45
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
| 47 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 48 |
47
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> n e. CC ) |
| 49 |
|
mulcl |
|- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ n e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) |
| 50 |
20 48 49
|
sylancr |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) |
| 51 |
|
efadd |
|- ( ( ( log ` B ) e. CC /\ ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 52 |
46 50 51
|
syl2an2r |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 53 |
|
eflog |
|- ( ( B e. CC /\ B =/= 0 ) -> ( exp ` ( log ` B ) ) = B ) |
| 54 |
53
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( exp ` ( log ` B ) ) = B ) |
| 55 |
|
ef2kpi |
|- ( n e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = 1 ) |
| 56 |
54 55
|
oveqan12d |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( B x. 1 ) ) |
| 57 |
|
simpl2 |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> B e. CC ) |
| 58 |
57
|
mulridd |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( B x. 1 ) = B ) |
| 59 |
52 56 58
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = B ) |
| 60 |
|
fveqeq2 |
|- ( A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( ( exp ` A ) = B <-> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = B ) ) |
| 61 |
59 60
|
syl5ibrcom |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( exp ` A ) = B ) ) |
| 62 |
61
|
rexlimdva |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( exp ` A ) = B ) ) |
| 63 |
44 62
|
impbid |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( exp ` A ) = B <-> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |