| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efmnd.1 |  |-  G = ( EndoFMnd ` A ) | 
						
							| 2 |  | efmnd.2 |  |-  B = ( A ^m A ) | 
						
							| 3 |  | efmnd.3 |  |-  .+ = ( f e. B , g e. B |-> ( f o. g ) ) | 
						
							| 4 |  | efmnd.4 |  |-  J = ( Xt_ ` ( A X. { ~P A } ) ) | 
						
							| 5 |  | elex |  |-  ( A e. V -> A e. _V ) | 
						
							| 6 |  | ovexd |  |-  ( a = A -> ( a ^m a ) e. _V ) | 
						
							| 7 |  | id |  |-  ( b = ( a ^m a ) -> b = ( a ^m a ) ) | 
						
							| 8 |  | id |  |-  ( a = A -> a = A ) | 
						
							| 9 | 8 8 | oveq12d |  |-  ( a = A -> ( a ^m a ) = ( A ^m A ) ) | 
						
							| 10 | 9 2 | eqtr4di |  |-  ( a = A -> ( a ^m a ) = B ) | 
						
							| 11 | 7 10 | sylan9eqr |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> b = B ) | 
						
							| 12 | 11 | opeq2d |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) | 
						
							| 13 |  | eqidd |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> ( f o. g ) = ( f o. g ) ) | 
						
							| 14 | 11 11 13 | mpoeq123dv |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> ( f e. b , g e. b |-> ( f o. g ) ) = ( f e. B , g e. B |-> ( f o. g ) ) ) | 
						
							| 15 | 14 3 | eqtr4di |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> ( f e. b , g e. b |-> ( f o. g ) ) = .+ ) | 
						
							| 16 | 15 | opeq2d |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. = <. ( +g ` ndx ) , .+ >. ) | 
						
							| 17 |  | simpl |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> a = A ) | 
						
							| 18 |  | pweq |  |-  ( a = A -> ~P a = ~P A ) | 
						
							| 19 | 18 | sneqd |  |-  ( a = A -> { ~P a } = { ~P A } ) | 
						
							| 20 | 19 | adantr |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> { ~P a } = { ~P A } ) | 
						
							| 21 | 17 20 | xpeq12d |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> ( a X. { ~P a } ) = ( A X. { ~P A } ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> ( Xt_ ` ( a X. { ~P a } ) ) = ( Xt_ ` ( A X. { ~P A } ) ) ) | 
						
							| 23 | 22 4 | eqtr4di |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> ( Xt_ ` ( a X. { ~P a } ) ) = J ) | 
						
							| 24 | 23 | opeq2d |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. = <. ( TopSet ` ndx ) , J >. ) | 
						
							| 25 | 12 16 24 | tpeq123d |  |-  ( ( a = A /\ b = ( a ^m a ) ) -> { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 26 | 6 25 | csbied |  |-  ( a = A -> [_ ( a ^m a ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 27 |  | df-efmnd |  |-  EndoFMnd = ( a e. _V |-> [_ ( a ^m a ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } ) | 
						
							| 28 |  | tpex |  |-  { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } e. _V | 
						
							| 29 | 26 27 28 | fvmpt |  |-  ( A e. _V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 30 | 5 29 | syl |  |-  ( A e. V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 31 | 1 30 | eqtrid |  |-  ( A e. V -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |