Description: Even the monoid of endofunctions on the empty set is actually a monoid. (Contributed by AV, 31-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | efmnd0nmnd | |- ( EndoFMnd ` (/) ) e. Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | |- (/) e. _V |
|
2 | eqid | |- ( EndoFMnd ` (/) ) = ( EndoFMnd ` (/) ) |
|
3 | 2 | efmndmnd | |- ( (/) e. _V -> ( EndoFMnd ` (/) ) e. Mnd ) |
4 | 1 3 | ax-mp | |- ( EndoFMnd ` (/) ) e. Mnd |