Description: The base set of the monoid of endofunctions on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Jan-2024) (Proof shortened by AV, 31-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efmndbas0 | |- ( Base ` ( EndoFMnd ` (/) ) ) = { (/) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( EndoFMnd ` (/) ) = ( EndoFMnd ` (/) ) | |
| 2 | eqid | |- ( Base ` ( EndoFMnd ` (/) ) ) = ( Base ` ( EndoFMnd ` (/) ) ) | |
| 3 | 1 2 | efmndbas | |- ( Base ` ( EndoFMnd ` (/) ) ) = ( (/) ^m (/) ) | 
| 4 | 0map0sn0 |  |-  ( (/) ^m (/) ) = { (/) } | |
| 5 | 3 4 | eqtri |  |-  ( Base ` ( EndoFMnd ` (/) ) ) = { (/) } |