| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efmndbas.g |  |-  G = ( EndoFMnd ` A ) | 
						
							| 2 |  | efmndbas.b |  |-  B = ( Base ` G ) | 
						
							| 3 | 1 2 | efmndbas |  |-  B = ( A ^m A ) | 
						
							| 4 |  | mapvalg |  |-  ( ( A e. _V /\ A e. _V ) -> ( A ^m A ) = { f | f : A --> A } ) | 
						
							| 5 | 4 | anidms |  |-  ( A e. _V -> ( A ^m A ) = { f | f : A --> A } ) | 
						
							| 6 | 3 5 | eqtrid |  |-  ( A e. _V -> B = { f | f : A --> A } ) | 
						
							| 7 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 8 | 7 | eqcomi |  |-  ( Base ` (/) ) = (/) | 
						
							| 9 |  | fvprc |  |-  ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) | 
						
							| 10 | 1 9 | eqtrid |  |-  ( -. A e. _V -> G = (/) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( -. A e. _V -> ( Base ` G ) = ( Base ` (/) ) ) | 
						
							| 12 | 2 11 | eqtrid |  |-  ( -. A e. _V -> B = ( Base ` (/) ) ) | 
						
							| 13 |  | mapprc |  |-  ( -. A e. _V -> { f | f : A --> A } = (/) ) | 
						
							| 14 | 8 12 13 | 3eqtr4a |  |-  ( -. A e. _V -> B = { f | f : A --> A } ) | 
						
							| 15 | 6 14 | pm2.61i |  |-  B = { f | f : A --> A } |