Description: The monoid of endofunctions on n objects has cardinality n ^ n . (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | |- G = ( EndoFMnd ` A ) | |
| efmndbas.b | |- B = ( Base ` G ) | ||
| Assertion | efmndhash | |- ( A e. Fin -> ( # ` B ) = ( ( # ` A ) ^ ( # ` A ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | efmndbas.g | |- G = ( EndoFMnd ` A ) | |
| 2 | efmndbas.b | |- B = ( Base ` G ) | |
| 3 | 1 2 | efmndbas | |- B = ( A ^m A ) | 
| 4 | 3 | a1i | |- ( A e. Fin -> B = ( A ^m A ) ) | 
| 5 | 4 | fveq2d | |- ( A e. Fin -> ( # ` B ) = ( # ` ( A ^m A ) ) ) | 
| 6 | hashmap | |- ( ( A e. Fin /\ A e. Fin ) -> ( # ` ( A ^m A ) ) = ( ( # ` A ) ^ ( # ` A ) ) ) | |
| 7 | 6 | anidms | |- ( A e. Fin -> ( # ` ( A ^m A ) ) = ( ( # ` A ) ^ ( # ` A ) ) ) | 
| 8 | 5 7 | eqtrd | |- ( A e. Fin -> ( # ` B ) = ( ( # ` A ) ^ ( # ` A ) ) ) |