Step |
Hyp |
Ref |
Expression |
1 |
|
efmndmgm.g |
|- G = ( EndoFMnd ` A ) |
2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
4 |
1 2 3
|
efmndcl |
|- ( ( f e. ( Base ` G ) /\ g e. ( Base ` G ) ) -> ( f ( +g ` G ) g ) e. ( Base ` G ) ) |
5 |
4
|
rgen2 |
|- A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) |
6 |
1
|
fvexi |
|- G e. _V |
7 |
2 3
|
ismgm |
|- ( G e. _V -> ( G e. Mgm <-> A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) ) ) |
8 |
6 7
|
ax-mp |
|- ( G e. Mgm <-> A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) ) |
9 |
5 8
|
mpbir |
|- G e. Mgm |