Step |
Hyp |
Ref |
Expression |
1 |
|
ielefmnd.g |
|- G = ( EndoFMnd ` A ) |
2 |
1
|
efmndsgrp |
|- G e. Smgrp |
3 |
2
|
a1i |
|- ( A e. V -> G e. Smgrp ) |
4 |
1
|
ielefmnd |
|- ( A e. V -> ( _I |` A ) e. ( Base ` G ) ) |
5 |
|
oveq1 |
|- ( i = ( _I |` A ) -> ( i ( +g ` G ) f ) = ( ( _I |` A ) ( +g ` G ) f ) ) |
6 |
5
|
eqeq1d |
|- ( i = ( _I |` A ) -> ( ( i ( +g ` G ) f ) = f <-> ( ( _I |` A ) ( +g ` G ) f ) = f ) ) |
7 |
|
oveq2 |
|- ( i = ( _I |` A ) -> ( f ( +g ` G ) i ) = ( f ( +g ` G ) ( _I |` A ) ) ) |
8 |
7
|
eqeq1d |
|- ( i = ( _I |` A ) -> ( ( f ( +g ` G ) i ) = f <-> ( f ( +g ` G ) ( _I |` A ) ) = f ) ) |
9 |
6 8
|
anbi12d |
|- ( i = ( _I |` A ) -> ( ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) <-> ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) ) |
10 |
9
|
ralbidv |
|- ( i = ( _I |` A ) -> ( A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) <-> A. f e. ( Base ` G ) ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) ) |
11 |
10
|
adantl |
|- ( ( A e. V /\ i = ( _I |` A ) ) -> ( A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) <-> A. f e. ( Base ` G ) ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) ) |
12 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
13 |
1 12
|
efmndbasf |
|- ( f e. ( Base ` G ) -> f : A --> A ) |
14 |
13
|
adantl |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> f : A --> A ) |
15 |
|
fcoi2 |
|- ( f : A --> A -> ( ( _I |` A ) o. f ) = f ) |
16 |
|
fcoi1 |
|- ( f : A --> A -> ( f o. ( _I |` A ) ) = f ) |
17 |
15 16
|
jca |
|- ( f : A --> A -> ( ( ( _I |` A ) o. f ) = f /\ ( f o. ( _I |` A ) ) = f ) ) |
18 |
14 17
|
syl |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( ( _I |` A ) o. f ) = f /\ ( f o. ( _I |` A ) ) = f ) ) |
19 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
20 |
1 12 19
|
efmndov |
|- ( ( ( _I |` A ) e. ( Base ` G ) /\ f e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) f ) = ( ( _I |` A ) o. f ) ) |
21 |
4 20
|
sylan |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) f ) = ( ( _I |` A ) o. f ) ) |
22 |
21
|
eqeq1d |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( ( _I |` A ) ( +g ` G ) f ) = f <-> ( ( _I |` A ) o. f ) = f ) ) |
23 |
4
|
anim1ci |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( f e. ( Base ` G ) /\ ( _I |` A ) e. ( Base ` G ) ) ) |
24 |
1 12 19
|
efmndov |
|- ( ( f e. ( Base ` G ) /\ ( _I |` A ) e. ( Base ` G ) ) -> ( f ( +g ` G ) ( _I |` A ) ) = ( f o. ( _I |` A ) ) ) |
25 |
23 24
|
syl |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( f ( +g ` G ) ( _I |` A ) ) = ( f o. ( _I |` A ) ) ) |
26 |
25
|
eqeq1d |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( f ( +g ` G ) ( _I |` A ) ) = f <-> ( f o. ( _I |` A ) ) = f ) ) |
27 |
22 26
|
anbi12d |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) <-> ( ( ( _I |` A ) o. f ) = f /\ ( f o. ( _I |` A ) ) = f ) ) ) |
28 |
18 27
|
mpbird |
|- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) |
29 |
28
|
ralrimiva |
|- ( A e. V -> A. f e. ( Base ` G ) ( ( ( _I |` A ) ( +g ` G ) f ) = f /\ ( f ( +g ` G ) ( _I |` A ) ) = f ) ) |
30 |
4 11 29
|
rspcedvd |
|- ( A e. V -> E. i e. ( Base ` G ) A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) ) |
31 |
12 19
|
ismnddef |
|- ( G e. Mnd <-> ( G e. Smgrp /\ E. i e. ( Base ` G ) A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) ) ) |
32 |
3 30 31
|
sylanbrc |
|- ( A e. V -> G e. Mnd ) |