Metamath Proof Explorer


Theorem efmndsgrp

Description: The monoid of endofunctions on a class A is a semigroup. (Contributed by AV, 28-Jan-2024)

Ref Expression
Hypothesis efmndmgm.g
|- G = ( EndoFMnd ` A )
Assertion efmndsgrp
|- G e. Smgrp

Proof

Step Hyp Ref Expression
1 efmndmgm.g
 |-  G = ( EndoFMnd ` A )
2 1 efmndmgm
 |-  G e. Mgm
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 eqid
 |-  ( +g ` G ) = ( +g ` G )
5 1 3 4 efmndcl
 |-  ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) )
6 1 3 4 efmndov
 |-  ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) = ( x o. y ) )
7 5 6 symggrplem
 |-  ( ( f e. ( Base ` G ) /\ g e. ( Base ` G ) /\ h e. ( Base ` G ) ) -> ( ( f ( +g ` G ) g ) ( +g ` G ) h ) = ( f ( +g ` G ) ( g ( +g ` G ) h ) ) )
8 7 rgen3
 |-  A. f e. ( Base ` G ) A. g e. ( Base ` G ) A. h e. ( Base ` G ) ( ( f ( +g ` G ) g ) ( +g ` G ) h ) = ( f ( +g ` G ) ( g ( +g ` G ) h ) )
9 3 4 issgrp
 |-  ( G e. Smgrp <-> ( G e. Mgm /\ A. f e. ( Base ` G ) A. g e. ( Base ` G ) A. h e. ( Base ` G ) ( ( f ( +g ` G ) g ) ( +g ` G ) h ) = ( f ( +g ` G ) ( g ( +g ` G ) h ) ) ) )
10 2 8 9 mpbir2an
 |-  G e. Smgrp