Metamath Proof Explorer


Theorem efmndtopn

Description: The topology of the monoid of endofunctions on A . (Contributed by AV, 31-Jan-2024)

Ref Expression
Hypotheses efmndtopn.g
|- G = ( EndoFMnd ` X )
efmndtopn.b
|- B = ( Base ` G )
Assertion efmndtopn
|- ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( TopOpen ` G ) )

Proof

Step Hyp Ref Expression
1 efmndtopn.g
 |-  G = ( EndoFMnd ` X )
2 efmndtopn.b
 |-  B = ( Base ` G )
3 1 efmndtset
 |-  ( X e. V -> ( Xt_ ` ( X X. { ~P X } ) ) = ( TopSet ` G ) )
4 3 oveq1d
 |-  ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( ( TopSet ` G ) |`t B ) )
5 eqid
 |-  ( TopSet ` G ) = ( TopSet ` G )
6 2 5 topnval
 |-  ( ( TopSet ` G ) |`t B ) = ( TopOpen ` G )
7 4 6 eqtrdi
 |-  ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( TopOpen ` G ) )