| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 2 |
|
oveq1 |
|- ( ( exp ` A ) = 0 -> ( ( exp ` A ) x. ( exp ` -u A ) ) = ( 0 x. ( exp ` -u A ) ) ) |
| 3 |
|
efcan |
|- ( A e. CC -> ( ( exp ` A ) x. ( exp ` -u A ) ) = 1 ) |
| 4 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 5 |
|
efcl |
|- ( -u A e. CC -> ( exp ` -u A ) e. CC ) |
| 6 |
4 5
|
syl |
|- ( A e. CC -> ( exp ` -u A ) e. CC ) |
| 7 |
6
|
mul02d |
|- ( A e. CC -> ( 0 x. ( exp ` -u A ) ) = 0 ) |
| 8 |
3 7
|
eqeq12d |
|- ( A e. CC -> ( ( ( exp ` A ) x. ( exp ` -u A ) ) = ( 0 x. ( exp ` -u A ) ) <-> 1 = 0 ) ) |
| 9 |
2 8
|
imbitrid |
|- ( A e. CC -> ( ( exp ` A ) = 0 -> 1 = 0 ) ) |
| 10 |
9
|
necon3d |
|- ( A e. CC -> ( 1 =/= 0 -> ( exp ` A ) =/= 0 ) ) |
| 11 |
1 10
|
mpi |
|- ( A e. CC -> ( exp ` A ) =/= 0 ) |