Step |
Hyp |
Ref |
Expression |
1 |
|
efne0d.1 |
|- ( ph -> A e. CC ) |
2 |
|
ax-1ne0 |
|- 1 =/= 0 |
3 |
|
oveq1 |
|- ( ( exp ` A ) = 0 -> ( ( exp ` A ) x. ( exp ` -u A ) ) = ( 0 x. ( exp ` -u A ) ) ) |
4 |
|
efcan |
|- ( A e. CC -> ( ( exp ` A ) x. ( exp ` -u A ) ) = 1 ) |
5 |
1 4
|
syl |
|- ( ph -> ( ( exp ` A ) x. ( exp ` -u A ) ) = 1 ) |
6 |
1
|
negcld |
|- ( ph -> -u A e. CC ) |
7 |
6
|
efcld |
|- ( ph -> ( exp ` -u A ) e. CC ) |
8 |
7
|
mul02d |
|- ( ph -> ( 0 x. ( exp ` -u A ) ) = 0 ) |
9 |
5 8
|
eqeq12d |
|- ( ph -> ( ( ( exp ` A ) x. ( exp ` -u A ) ) = ( 0 x. ( exp ` -u A ) ) <-> 1 = 0 ) ) |
10 |
3 9
|
imbitrid |
|- ( ph -> ( ( exp ` A ) = 0 -> 1 = 0 ) ) |
11 |
10
|
necon3d |
|- ( ph -> ( 1 =/= 0 -> ( exp ` A ) =/= 0 ) ) |
12 |
2 11
|
mpi |
|- ( ph -> ( exp ` A ) =/= 0 ) |