Step |
Hyp |
Ref |
Expression |
1 |
|
efopn.j |
|- J = ( TopOpen ` CCfld ) |
2 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
3 |
|
f1orn |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log <-> ( log Fn ( CC \ { 0 } ) /\ Fun `' log ) ) |
4 |
3
|
simprbi |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> Fun `' log ) |
5 |
|
funcnvres |
|- ( Fun `' log -> `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( `' log |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) ) |
6 |
2 4 5
|
mp2b |
|- `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( `' log |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
7 |
|
df-log |
|- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
8 |
7
|
cnveqi |
|- `' log = `' `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
9 |
|
relres |
|- Rel ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
10 |
|
dfrel2 |
|- ( Rel ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) <-> `' `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) ) |
11 |
9 10
|
mpbi |
|- `' `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
12 |
8 11
|
eqtri |
|- `' log = ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
13 |
12
|
reseq1i |
|- ( `' log |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) = ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
14 |
|
imassrn |
|- ( log " ( CC \ ( -oo (,] 0 ) ) ) C_ ran log |
15 |
|
logrn |
|- ran log = ( `' Im " ( -u _pi (,] _pi ) ) |
16 |
14 15
|
sseqtri |
|- ( log " ( CC \ ( -oo (,] 0 ) ) ) C_ ( `' Im " ( -u _pi (,] _pi ) ) |
17 |
|
resabs1 |
|- ( ( log " ( CC \ ( -oo (,] 0 ) ) ) C_ ( `' Im " ( -u _pi (,] _pi ) ) -> ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) = ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) ) |
18 |
16 17
|
ax-mp |
|- ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) = ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
19 |
6 13 18
|
3eqtri |
|- `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
20 |
19
|
imaeq1i |
|- ( `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) = ( ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) |
21 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
22 |
|
0cnd |
|- ( ( R e. RR+ /\ R < _pi ) -> 0 e. CC ) |
23 |
|
rpxr |
|- ( R e. RR+ -> R e. RR* ) |
24 |
23
|
adantr |
|- ( ( R e. RR+ /\ R < _pi ) -> R e. RR* ) |
25 |
|
blssm |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) R ) C_ CC ) |
26 |
21 22 24 25
|
mp3an2i |
|- ( ( R e. RR+ /\ R < _pi ) -> ( 0 ( ball ` ( abs o. - ) ) R ) C_ CC ) |
27 |
26
|
sselda |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> x e. CC ) |
28 |
27
|
imcld |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` x ) e. RR ) |
29 |
|
efopnlem1 |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` x ) ) < _pi ) |
30 |
|
pire |
|- _pi e. RR |
31 |
|
abslt |
|- ( ( ( Im ` x ) e. RR /\ _pi e. RR ) -> ( ( abs ` ( Im ` x ) ) < _pi <-> ( -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) ) |
32 |
28 30 31
|
sylancl |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( ( abs ` ( Im ` x ) ) < _pi <-> ( -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) ) |
33 |
29 32
|
mpbid |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) |
34 |
33
|
simpld |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> -u _pi < ( Im ` x ) ) |
35 |
33
|
simprd |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` x ) < _pi ) |
36 |
30
|
renegcli |
|- -u _pi e. RR |
37 |
36
|
rexri |
|- -u _pi e. RR* |
38 |
30
|
rexri |
|- _pi e. RR* |
39 |
|
elioo2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* ) -> ( ( Im ` x ) e. ( -u _pi (,) _pi ) <-> ( ( Im ` x ) e. RR /\ -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) ) |
40 |
37 38 39
|
mp2an |
|- ( ( Im ` x ) e. ( -u _pi (,) _pi ) <-> ( ( Im ` x ) e. RR /\ -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) |
41 |
28 34 35 40
|
syl3anbrc |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` x ) e. ( -u _pi (,) _pi ) ) |
42 |
|
imf |
|- Im : CC --> RR |
43 |
|
ffn |
|- ( Im : CC --> RR -> Im Fn CC ) |
44 |
|
elpreima |
|- ( Im Fn CC -> ( x e. ( `' Im " ( -u _pi (,) _pi ) ) <-> ( x e. CC /\ ( Im ` x ) e. ( -u _pi (,) _pi ) ) ) ) |
45 |
42 43 44
|
mp2b |
|- ( x e. ( `' Im " ( -u _pi (,) _pi ) ) <-> ( x e. CC /\ ( Im ` x ) e. ( -u _pi (,) _pi ) ) ) |
46 |
27 41 45
|
sylanbrc |
|- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> x e. ( `' Im " ( -u _pi (,) _pi ) ) ) |
47 |
46
|
ex |
|- ( ( R e. RR+ /\ R < _pi ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) R ) -> x e. ( `' Im " ( -u _pi (,) _pi ) ) ) ) |
48 |
47
|
ssrdv |
|- ( ( R e. RR+ /\ R < _pi ) -> ( 0 ( ball ` ( abs o. - ) ) R ) C_ ( `' Im " ( -u _pi (,) _pi ) ) ) |
49 |
|
df-ima |
|- ( log " ( CC \ ( -oo (,] 0 ) ) ) = ran ( log |` ( CC \ ( -oo (,] 0 ) ) ) |
50 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
51 |
50
|
logf1o2 |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) -1-1-onto-> ( `' Im " ( -u _pi (,) _pi ) ) |
52 |
|
f1ofo |
|- ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) -1-1-onto-> ( `' Im " ( -u _pi (,) _pi ) ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) -onto-> ( `' Im " ( -u _pi (,) _pi ) ) ) |
53 |
|
forn |
|- ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) -onto-> ( `' Im " ( -u _pi (,) _pi ) ) -> ran ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( `' Im " ( -u _pi (,) _pi ) ) ) |
54 |
51 52 53
|
mp2b |
|- ran ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( `' Im " ( -u _pi (,) _pi ) ) |
55 |
49 54
|
eqtri |
|- ( log " ( CC \ ( -oo (,] 0 ) ) ) = ( `' Im " ( -u _pi (,) _pi ) ) |
56 |
48 55
|
sseqtrrdi |
|- ( ( R e. RR+ /\ R < _pi ) -> ( 0 ( ball ` ( abs o. - ) ) R ) C_ ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
57 |
|
resima2 |
|- ( ( 0 ( ball ` ( abs o. - ) ) R ) C_ ( log " ( CC \ ( -oo (,] 0 ) ) ) -> ( ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) = ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) ) |
58 |
56 57
|
syl |
|- ( ( R e. RR+ /\ R < _pi ) -> ( ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) = ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) ) |
59 |
20 58
|
eqtrid |
|- ( ( R e. RR+ /\ R < _pi ) -> ( `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) = ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) ) |
60 |
50
|
logcn |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) |
61 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
62 |
|
ssid |
|- CC C_ CC |
63 |
|
eqid |
|- ( J |`t ( CC \ ( -oo (,] 0 ) ) ) = ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |
64 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
65 |
64
|
toponrestid |
|- J = ( J |`t CC ) |
66 |
1 63 65
|
cncfcn |
|- ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ CC C_ CC ) -> ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) Cn J ) ) |
67 |
61 62 66
|
mp2an |
|- ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) Cn J ) |
68 |
60 67
|
eleqtri |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) Cn J ) |
69 |
1
|
cnfldtopn |
|- J = ( MetOpen ` ( abs o. - ) ) |
70 |
69
|
blopn |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) R ) e. J ) |
71 |
21 22 24 70
|
mp3an2i |
|- ( ( R e. RR+ /\ R < _pi ) -> ( 0 ( ball ` ( abs o. - ) ) R ) e. J ) |
72 |
|
cnima |
|- ( ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) Cn J ) /\ ( 0 ( ball ` ( abs o. - ) ) R ) e. J ) -> ( `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) ) |
73 |
68 71 72
|
sylancr |
|- ( ( R e. RR+ /\ R < _pi ) -> ( `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) ) |
74 |
59 73
|
eqeltrrd |
|- ( ( R e. RR+ /\ R < _pi ) -> ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) ) |
75 |
1
|
cnfldtop |
|- J e. Top |
76 |
50
|
logdmopn |
|- ( CC \ ( -oo (,] 0 ) ) e. ( TopOpen ` CCfld ) |
77 |
76 1
|
eleqtrri |
|- ( CC \ ( -oo (,] 0 ) ) e. J |
78 |
|
restopn2 |
|- ( ( J e. Top /\ ( CC \ ( -oo (,] 0 ) ) e. J ) -> ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) <-> ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J /\ ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) ) ) |
79 |
75 77 78
|
mp2an |
|- ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) <-> ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J /\ ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) ) |
80 |
74 79
|
sylib |
|- ( ( R e. RR+ /\ R < _pi ) -> ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J /\ ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) ) |
81 |
80
|
simpld |
|- ( ( R e. RR+ /\ R < _pi ) -> ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J ) |