Metamath Proof Explorer


Theorem efrn2lp

Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994)

Ref Expression
Assertion efrn2lp
|- ( ( _E Fr A /\ ( B e. A /\ C e. A ) ) -> -. ( B e. C /\ C e. B ) )

Proof

Step Hyp Ref Expression
1 fr2nr
 |-  ( ( _E Fr A /\ ( B e. A /\ C e. A ) ) -> -. ( B _E C /\ C _E B ) )
2 epelg
 |-  ( C e. A -> ( B _E C <-> B e. C ) )
3 epelg
 |-  ( B e. A -> ( C _E B <-> C e. B ) )
4 2 3 bi2anan9r
 |-  ( ( B e. A /\ C e. A ) -> ( ( B _E C /\ C _E B ) <-> ( B e. C /\ C e. B ) ) )
5 4 adantl
 |-  ( ( _E Fr A /\ ( B e. A /\ C e. A ) ) -> ( ( B _E C /\ C _E B ) <-> ( B e. C /\ C e. B ) ) )
6 1 5 mtbid
 |-  ( ( _E Fr A /\ ( B e. A /\ C e. A ) ) -> -. ( B e. C /\ C e. B ) )