Step |
Hyp |
Ref |
Expression |
1 |
|
efsep.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
|
efsep.2 |
|- N = ( M + 1 ) |
3 |
|
efsep.3 |
|- M e. NN0 |
4 |
|
efsep.4 |
|- ( ph -> A e. CC ) |
5 |
|
efsep.5 |
|- ( ph -> B e. CC ) |
6 |
|
efsep.6 |
|- ( ph -> ( exp ` A ) = ( B + sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) ) |
7 |
|
efsep.7 |
|- ( ph -> ( B + ( ( A ^ M ) / ( ! ` M ) ) ) = D ) |
8 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
9 |
3
|
nn0zi |
|- M e. ZZ |
10 |
9
|
a1i |
|- ( ph -> M e. ZZ ) |
11 |
|
eqidd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( F ` k ) ) |
12 |
|
eluznn0 |
|- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
13 |
3 12
|
mpan |
|- ( k e. ( ZZ>= ` M ) -> k e. NN0 ) |
14 |
1
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
16 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
17 |
4 16
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
18 |
15 17
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
19 |
13 18
|
sylan2 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
20 |
1
|
eftlcvg |
|- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
21 |
4 3 20
|
sylancl |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
22 |
8 10 11 19 21
|
isum1p |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( F ` k ) ) ) |
23 |
1
|
eftval |
|- ( M e. NN0 -> ( F ` M ) = ( ( A ^ M ) / ( ! ` M ) ) ) |
24 |
3 23
|
ax-mp |
|- ( F ` M ) = ( ( A ^ M ) / ( ! ` M ) ) |
25 |
2
|
eqcomi |
|- ( M + 1 ) = N |
26 |
25
|
fveq2i |
|- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` N ) |
27 |
26
|
sumeq1i |
|- sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( F ` k ) = sum_ k e. ( ZZ>= ` N ) ( F ` k ) |
28 |
24 27
|
oveq12i |
|- ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( F ` k ) ) = ( ( ( A ^ M ) / ( ! ` M ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) |
29 |
22 28
|
eqtrdi |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) = ( ( ( A ^ M ) / ( ! ` M ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |
30 |
29
|
oveq2d |
|- ( ph -> ( B + sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) = ( B + ( ( ( A ^ M ) / ( ! ` M ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) ) |
31 |
|
eftcl |
|- ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ M ) / ( ! ` M ) ) e. CC ) |
32 |
4 3 31
|
sylancl |
|- ( ph -> ( ( A ^ M ) / ( ! ` M ) ) e. CC ) |
33 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
34 |
3 33
|
ax-mp |
|- ( M + 1 ) e. NN0 |
35 |
2 34
|
eqeltri |
|- N e. NN0 |
36 |
1
|
eftlcl |
|- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( ZZ>= ` N ) ( F ` k ) e. CC ) |
37 |
4 35 36
|
sylancl |
|- ( ph -> sum_ k e. ( ZZ>= ` N ) ( F ` k ) e. CC ) |
38 |
5 32 37
|
addassd |
|- ( ph -> ( ( B + ( ( A ^ M ) / ( ! ` M ) ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) = ( B + ( ( ( A ^ M ) / ( ! ` M ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) ) |
39 |
30 38
|
eqtr4d |
|- ( ph -> ( B + sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) = ( ( B + ( ( A ^ M ) / ( ! ` M ) ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |
40 |
7
|
oveq1d |
|- ( ph -> ( ( B + ( ( A ^ M ) / ( ! ` M ) ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) = ( D + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |
41 |
6 39 40
|
3eqtrd |
|- ( ph -> ( exp ` A ) = ( D + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |