Step |
Hyp |
Ref |
Expression |
1 |
|
expcl |
|- ( ( A e. CC /\ K e. NN0 ) -> ( A ^ K ) e. CC ) |
2 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
3 |
2
|
adantl |
|- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. NN ) |
4 |
3
|
nncnd |
|- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. CC ) |
5 |
|
facne0 |
|- ( K e. NN0 -> ( ! ` K ) =/= 0 ) |
6 |
5
|
adantl |
|- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) =/= 0 ) |
7 |
1 4 6
|
absdivd |
|- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( ( A ^ K ) / ( ! ` K ) ) ) = ( ( abs ` ( A ^ K ) ) / ( abs ` ( ! ` K ) ) ) ) |
8 |
|
absexp |
|- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( A ^ K ) ) = ( ( abs ` A ) ^ K ) ) |
9 |
3
|
nnred |
|- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. RR ) |
10 |
3
|
nnnn0d |
|- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. NN0 ) |
11 |
10
|
nn0ge0d |
|- ( ( A e. CC /\ K e. NN0 ) -> 0 <_ ( ! ` K ) ) |
12 |
9 11
|
absidd |
|- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( ! ` K ) ) = ( ! ` K ) ) |
13 |
8 12
|
oveq12d |
|- ( ( A e. CC /\ K e. NN0 ) -> ( ( abs ` ( A ^ K ) ) / ( abs ` ( ! ` K ) ) ) = ( ( ( abs ` A ) ^ K ) / ( ! ` K ) ) ) |
14 |
7 13
|
eqtrd |
|- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( ( A ^ K ) / ( ! ` K ) ) ) = ( ( ( abs ` A ) ^ K ) / ( ! ` K ) ) ) |