Metamath Proof Explorer


Theorem eftcl

Description: Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007)

Ref Expression
Assertion eftcl
|- ( ( A e. CC /\ K e. NN0 ) -> ( ( A ^ K ) / ( ! ` K ) ) e. CC )

Proof

Step Hyp Ref Expression
1 expcl
 |-  ( ( A e. CC /\ K e. NN0 ) -> ( A ^ K ) e. CC )
2 faccl
 |-  ( K e. NN0 -> ( ! ` K ) e. NN )
3 2 nncnd
 |-  ( K e. NN0 -> ( ! ` K ) e. CC )
4 3 adantl
 |-  ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. CC )
5 facne0
 |-  ( K e. NN0 -> ( ! ` K ) =/= 0 )
6 5 adantl
 |-  ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) =/= 0 )
7 1 4 6 divcld
 |-  ( ( A e. CC /\ K e. NN0 ) -> ( ( A ^ K ) / ( ! ` K ) ) e. CC )