Step |
Hyp |
Ref |
Expression |
1 |
|
eftl.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
1
|
efcllem |
|- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
3 |
2
|
adantr |
|- ( ( A e. CC /\ M e. NN0 ) -> seq 0 ( + , F ) e. dom ~~> ) |
4 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
5 |
|
simpr |
|- ( ( A e. CC /\ M e. NN0 ) -> M e. NN0 ) |
6 |
1
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
7 |
6
|
adantl |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
8 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
9 |
8
|
adantlr |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
10 |
7 9
|
eqeltrd |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
11 |
4 5 10
|
iserex |
|- ( ( A e. CC /\ M e. NN0 ) -> ( seq 0 ( + , F ) e. dom ~~> <-> seq M ( + , F ) e. dom ~~> ) ) |
12 |
3 11
|
mpbid |
|- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |