Step |
Hyp |
Ref |
Expression |
1 |
|
eftl.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
|
eftl.2 |
|- G = ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) |
3 |
|
eftl.3 |
|- H = ( n e. NN0 |-> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ n ) ) ) |
4 |
|
eftl.4 |
|- ( ph -> M e. NN ) |
5 |
|
eftl.5 |
|- ( ph -> A e. CC ) |
6 |
|
eftl.6 |
|- ( ph -> ( abs ` A ) <_ 1 ) |
7 |
4
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
8 |
1
|
eftlcl |
|- ( ( A e. CC /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. CC ) |
9 |
5 7 8
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. CC ) |
10 |
9
|
abscld |
|- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) e. RR ) |
11 |
5
|
abscld |
|- ( ph -> ( abs ` A ) e. RR ) |
12 |
2
|
reeftlcl |
|- ( ( ( abs ` A ) e. RR /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. RR ) |
13 |
11 7 12
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. RR ) |
14 |
11 7
|
reexpcld |
|- ( ph -> ( ( abs ` A ) ^ M ) e. RR ) |
15 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
16 |
7 15
|
syl |
|- ( ph -> ( M + 1 ) e. NN0 ) |
17 |
16
|
nn0red |
|- ( ph -> ( M + 1 ) e. RR ) |
18 |
7
|
faccld |
|- ( ph -> ( ! ` M ) e. NN ) |
19 |
18 4
|
nnmulcld |
|- ( ph -> ( ( ! ` M ) x. M ) e. NN ) |
20 |
17 19
|
nndivred |
|- ( ph -> ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) e. RR ) |
21 |
14 20
|
remulcld |
|- ( ph -> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) e. RR ) |
22 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
23 |
4
|
nnzd |
|- ( ph -> M e. ZZ ) |
24 |
|
eqidd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( F ` k ) ) |
25 |
|
eluznn0 |
|- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
26 |
7 25
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
27 |
1
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
29 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
30 |
5 29
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
31 |
28 30
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
32 |
26 31
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
33 |
1
|
eftlcvg |
|- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
34 |
5 7 33
|
syl2anc |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
35 |
22 23 24 32 34
|
isumclim2 |
|- ( ph -> seq M ( + , F ) ~~> sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) |
36 |
|
eqidd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) = ( G ` k ) ) |
37 |
2
|
eftval |
|- ( k e. NN0 -> ( G ` k ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
38 |
37
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
39 |
|
reeftcl |
|- ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) e. RR ) |
40 |
11 39
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) e. RR ) |
41 |
38 40
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. RR ) |
42 |
26 41
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) e. RR ) |
43 |
42
|
recnd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) e. CC ) |
44 |
11
|
recnd |
|- ( ph -> ( abs ` A ) e. CC ) |
45 |
2
|
eftlcvg |
|- ( ( ( abs ` A ) e. CC /\ M e. NN0 ) -> seq M ( + , G ) e. dom ~~> ) |
46 |
44 7 45
|
syl2anc |
|- ( ph -> seq M ( + , G ) e. dom ~~> ) |
47 |
22 23 36 43 46
|
isumclim2 |
|- ( ph -> seq M ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
48 |
|
eftabs |
|- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
49 |
5 48
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
50 |
28
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( F ` k ) ) = ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) ) |
51 |
49 50 38
|
3eqtr4rd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
52 |
26 51
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
53 |
22 35 47 23 32 52
|
iserabs |
|- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) <_ sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
54 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
55 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
56 |
4
|
nncnd |
|- ( ph -> M e. CC ) |
57 |
|
nn0cn |
|- ( j e. NN0 -> j e. CC ) |
58 |
|
nn0ex |
|- NN0 e. _V |
59 |
58
|
mptex |
|- ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) e. _V |
60 |
2 59
|
eqeltri |
|- G e. _V |
61 |
60
|
shftval4 |
|- ( ( M e. CC /\ j e. CC ) -> ( ( G shift -u M ) ` j ) = ( G ` ( M + j ) ) ) |
62 |
56 57 61
|
syl2an |
|- ( ( ph /\ j e. NN0 ) -> ( ( G shift -u M ) ` j ) = ( G ` ( M + j ) ) ) |
63 |
|
nn0addcl |
|- ( ( M e. NN0 /\ j e. NN0 ) -> ( M + j ) e. NN0 ) |
64 |
7 63
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( M + j ) e. NN0 ) |
65 |
2
|
eftval |
|- ( ( M + j ) e. NN0 -> ( G ` ( M + j ) ) = ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) ) |
66 |
64 65
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) = ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) ) |
67 |
11
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
68 |
|
reeftcl |
|- ( ( ( abs ` A ) e. RR /\ ( M + j ) e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) e. RR ) |
69 |
67 64 68
|
syl2anc |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) e. RR ) |
70 |
66 69
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) e. RR ) |
71 |
|
oveq2 |
|- ( n = j -> ( ( 1 / ( M + 1 ) ) ^ n ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
72 |
71
|
oveq2d |
|- ( n = j -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ n ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
73 |
|
ovex |
|- ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. _V |
74 |
72 3 73
|
fvmpt |
|- ( j e. NN0 -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
75 |
74
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
76 |
14 18
|
nndivred |
|- ( ph -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. RR ) |
77 |
76
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. RR ) |
78 |
4
|
peano2nnd |
|- ( ph -> ( M + 1 ) e. NN ) |
79 |
78
|
nnrecred |
|- ( ph -> ( 1 / ( M + 1 ) ) e. RR ) |
80 |
|
reexpcl |
|- ( ( ( 1 / ( M + 1 ) ) e. RR /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. RR ) |
81 |
79 80
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. RR ) |
82 |
77 81
|
remulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. RR ) |
83 |
67 64
|
reexpcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) e. RR ) |
84 |
14
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) e. RR ) |
85 |
64
|
faccld |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. NN ) |
86 |
85
|
nnred |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. RR ) |
87 |
86 82
|
remulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) e. RR ) |
88 |
7
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> M e. NN0 ) |
89 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
90 |
23 89
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
91 |
|
uzaddcl |
|- ( ( M e. ( ZZ>= ` M ) /\ j e. NN0 ) -> ( M + j ) e. ( ZZ>= ` M ) ) |
92 |
90 91
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( M + j ) e. ( ZZ>= ` M ) ) |
93 |
5
|
absge0d |
|- ( ph -> 0 <_ ( abs ` A ) ) |
94 |
93
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
95 |
6
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) <_ 1 ) |
96 |
67 88 92 94 95
|
leexp2rd |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( abs ` A ) ^ M ) ) |
97 |
18
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) e. NN ) |
98 |
|
nnexpcl |
|- ( ( ( M + 1 ) e. NN /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. NN ) |
99 |
78 98
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. NN ) |
100 |
97 99
|
nnmulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. NN ) |
101 |
100
|
nnred |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR ) |
102 |
11 7 93
|
expge0d |
|- ( ph -> 0 <_ ( ( abs ` A ) ^ M ) ) |
103 |
14 102
|
jca |
|- ( ph -> ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) |
104 |
103
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) |
105 |
|
faclbnd6 |
|- ( ( M e. NN0 /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) |
106 |
7 105
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) |
107 |
|
lemul1a |
|- ( ( ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR /\ ( ! ` ( M + j ) ) e. RR /\ ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) /\ ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) -> ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) ) |
108 |
101 86 104 106 107
|
syl31anc |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) ) |
109 |
86 84
|
remulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) e. RR ) |
110 |
100
|
nnrpd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR+ ) |
111 |
84 109 110
|
lemuldiv2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) <-> ( ( abs ` A ) ^ M ) <_ ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) ) |
112 |
108 111
|
mpbid |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) <_ ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) |
113 |
85
|
nncnd |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. CC ) |
114 |
14
|
recnd |
|- ( ph -> ( ( abs ` A ) ^ M ) e. CC ) |
115 |
114
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) e. CC ) |
116 |
100
|
nncnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. CC ) |
117 |
100
|
nnne0d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) =/= 0 ) |
118 |
113 115 116 117
|
divassd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) ) |
119 |
78
|
nncnd |
|- ( ph -> ( M + 1 ) e. CC ) |
120 |
119
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) e. CC ) |
121 |
78
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) e. NN ) |
122 |
121
|
nnne0d |
|- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) =/= 0 ) |
123 |
|
nn0z |
|- ( j e. NN0 -> j e. ZZ ) |
124 |
123
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> j e. ZZ ) |
125 |
120 122 124
|
exprecd |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) = ( 1 / ( ( M + 1 ) ^ j ) ) ) |
126 |
125
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( 1 / ( ( M + 1 ) ^ j ) ) ) ) |
127 |
76
|
recnd |
|- ( ph -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. CC ) |
128 |
127
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. CC ) |
129 |
99
|
nncnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. CC ) |
130 |
99
|
nnne0d |
|- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) =/= 0 ) |
131 |
128 129 130
|
divrecd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) / ( ( M + 1 ) ^ j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( 1 / ( ( M + 1 ) ^ j ) ) ) ) |
132 |
18
|
nncnd |
|- ( ph -> ( ! ` M ) e. CC ) |
133 |
132
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) e. CC ) |
134 |
|
facne0 |
|- ( M e. NN0 -> ( ! ` M ) =/= 0 ) |
135 |
7 134
|
syl |
|- ( ph -> ( ! ` M ) =/= 0 ) |
136 |
135
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) =/= 0 ) |
137 |
115 133 129 136 130
|
divdiv1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) / ( ( M + 1 ) ^ j ) ) = ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) |
138 |
126 131 137
|
3eqtr2rd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
139 |
138
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
140 |
118 139
|
eqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
141 |
112 140
|
breqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
142 |
83 84 87 96 141
|
letrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
143 |
85
|
nngt0d |
|- ( ( ph /\ j e. NN0 ) -> 0 < ( ! ` ( M + j ) ) ) |
144 |
|
ledivmul |
|- ( ( ( ( abs ` A ) ^ ( M + j ) ) e. RR /\ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. RR /\ ( ( ! ` ( M + j ) ) e. RR /\ 0 < ( ! ` ( M + j ) ) ) ) -> ( ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) <-> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) ) |
145 |
83 82 86 143 144
|
syl112anc |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) <-> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) ) |
146 |
142 145
|
mpbird |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
147 |
66 146
|
eqbrtrd |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
148 |
|
0z |
|- 0 e. ZZ |
149 |
23
|
znegcld |
|- ( ph -> -u M e. ZZ ) |
150 |
60
|
seqshft |
|- ( ( 0 e. ZZ /\ -u M e. ZZ ) -> seq 0 ( + , ( G shift -u M ) ) = ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ) |
151 |
148 149 150
|
sylancr |
|- ( ph -> seq 0 ( + , ( G shift -u M ) ) = ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ) |
152 |
|
0cn |
|- 0 e. CC |
153 |
|
subneg |
|- ( ( 0 e. CC /\ M e. CC ) -> ( 0 - -u M ) = ( 0 + M ) ) |
154 |
152 153
|
mpan |
|- ( M e. CC -> ( 0 - -u M ) = ( 0 + M ) ) |
155 |
|
addid2 |
|- ( M e. CC -> ( 0 + M ) = M ) |
156 |
154 155
|
eqtrd |
|- ( M e. CC -> ( 0 - -u M ) = M ) |
157 |
56 156
|
syl |
|- ( ph -> ( 0 - -u M ) = M ) |
158 |
157
|
seqeq1d |
|- ( ph -> seq ( 0 - -u M ) ( + , G ) = seq M ( + , G ) ) |
159 |
158 47
|
eqbrtrd |
|- ( ph -> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
160 |
|
seqex |
|- seq ( 0 - -u M ) ( + , G ) e. _V |
161 |
|
climshft |
|- ( ( -u M e. ZZ /\ seq ( 0 - -u M ) ( + , G ) e. _V ) -> ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <-> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) ) |
162 |
149 160 161
|
sylancl |
|- ( ph -> ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <-> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) ) |
163 |
159 162
|
mpbird |
|- ( ph -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
164 |
|
ovex |
|- ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. _V |
165 |
|
sumex |
|- sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. _V |
166 |
164 165
|
breldm |
|- ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. dom ~~> ) |
167 |
163 166
|
syl |
|- ( ph -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. dom ~~> ) |
168 |
151 167
|
eqeltrd |
|- ( ph -> seq 0 ( + , ( G shift -u M ) ) e. dom ~~> ) |
169 |
4
|
nnge1d |
|- ( ph -> 1 <_ M ) |
170 |
|
1nn |
|- 1 e. NN |
171 |
|
nnleltp1 |
|- ( ( 1 e. NN /\ M e. NN ) -> ( 1 <_ M <-> 1 < ( M + 1 ) ) ) |
172 |
170 4 171
|
sylancr |
|- ( ph -> ( 1 <_ M <-> 1 < ( M + 1 ) ) ) |
173 |
169 172
|
mpbid |
|- ( ph -> 1 < ( M + 1 ) ) |
174 |
16
|
nn0ge0d |
|- ( ph -> 0 <_ ( M + 1 ) ) |
175 |
17 174
|
absidd |
|- ( ph -> ( abs ` ( M + 1 ) ) = ( M + 1 ) ) |
176 |
173 175
|
breqtrrd |
|- ( ph -> 1 < ( abs ` ( M + 1 ) ) ) |
177 |
|
eqid |
|- ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) |
178 |
|
ovex |
|- ( ( 1 / ( M + 1 ) ) ^ j ) e. _V |
179 |
71 177 178
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
180 |
179
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
181 |
119 176 180
|
georeclim |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ) ~~> ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) |
182 |
81
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. CC ) |
183 |
180 182
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) e. CC ) |
184 |
180
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
185 |
75 184
|
eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) ) ) |
186 |
54 55 127 181 183 185
|
isermulc2 |
|- ( ph -> seq 0 ( + , H ) ~~> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) ) |
187 |
|
ax-1cn |
|- 1 e. CC |
188 |
|
pncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
189 |
56 187 188
|
sylancl |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
190 |
189
|
oveq2d |
|- ( ph -> ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) = ( ( M + 1 ) / M ) ) |
191 |
190
|
oveq2d |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / M ) ) ) |
192 |
17 4
|
nndivred |
|- ( ph -> ( ( M + 1 ) / M ) e. RR ) |
193 |
192
|
recnd |
|- ( ph -> ( ( M + 1 ) / M ) e. CC ) |
194 |
114 193 132 135
|
div23d |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / M ) ) ) |
195 |
191 194
|
eqtr4d |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) ) |
196 |
114 193 132 135
|
divassd |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( ( M + 1 ) / M ) / ( ! ` M ) ) ) ) |
197 |
4
|
nnne0d |
|- ( ph -> M =/= 0 ) |
198 |
119 56 132 197 135
|
divdiv1d |
|- ( ph -> ( ( ( M + 1 ) / M ) / ( ! ` M ) ) = ( ( M + 1 ) / ( M x. ( ! ` M ) ) ) ) |
199 |
56 132
|
mulcomd |
|- ( ph -> ( M x. ( ! ` M ) ) = ( ( ! ` M ) x. M ) ) |
200 |
199
|
oveq2d |
|- ( ph -> ( ( M + 1 ) / ( M x. ( ! ` M ) ) ) = ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) |
201 |
198 200
|
eqtrd |
|- ( ph -> ( ( ( M + 1 ) / M ) / ( ! ` M ) ) = ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) |
202 |
201
|
oveq2d |
|- ( ph -> ( ( ( abs ` A ) ^ M ) x. ( ( ( M + 1 ) / M ) / ( ! ` M ) ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
203 |
195 196 202
|
3eqtrd |
|- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
204 |
186 203
|
breqtrd |
|- ( ph -> seq 0 ( + , H ) ~~> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
205 |
|
seqex |
|- seq 0 ( + , H ) e. _V |
206 |
|
ovex |
|- ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) e. _V |
207 |
205 206
|
breldm |
|- ( seq 0 ( + , H ) ~~> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) -> seq 0 ( + , H ) e. dom ~~> ) |
208 |
204 207
|
syl |
|- ( ph -> seq 0 ( + , H ) e. dom ~~> ) |
209 |
54 55 62 70 75 82 147 168 208
|
isumle |
|- ( ph -> sum_ j e. NN0 ( G ` ( M + j ) ) <_ sum_ j e. NN0 ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
210 |
|
eqid |
|- ( ZZ>= ` ( 0 + M ) ) = ( ZZ>= ` ( 0 + M ) ) |
211 |
|
fveq2 |
|- ( k = ( M + j ) -> ( G ` k ) = ( G ` ( M + j ) ) ) |
212 |
56
|
addid2d |
|- ( ph -> ( 0 + M ) = M ) |
213 |
212
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( 0 + M ) ) = ( ZZ>= ` M ) ) |
214 |
213
|
eleq2d |
|- ( ph -> ( k e. ( ZZ>= ` ( 0 + M ) ) <-> k e. ( ZZ>= ` M ) ) ) |
215 |
214
|
biimpa |
|- ( ( ph /\ k e. ( ZZ>= ` ( 0 + M ) ) ) -> k e. ( ZZ>= ` M ) ) |
216 |
215 43
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` ( 0 + M ) ) ) -> ( G ` k ) e. CC ) |
217 |
54 210 211 23 55 216
|
isumshft |
|- ( ph -> sum_ k e. ( ZZ>= ` ( 0 + M ) ) ( G ` k ) = sum_ j e. NN0 ( G ` ( M + j ) ) ) |
218 |
213
|
sumeq1d |
|- ( ph -> sum_ k e. ( ZZ>= ` ( 0 + M ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
219 |
217 218
|
eqtr3d |
|- ( ph -> sum_ j e. NN0 ( G ` ( M + j ) ) = sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
220 |
82
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. CC ) |
221 |
54 55 75 220 204
|
isumclim |
|- ( ph -> sum_ j e. NN0 ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
222 |
209 219 221
|
3brtr3d |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <_ ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
223 |
10 13 21 53 222
|
letrd |
|- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) <_ ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |