Metamath Proof Explorer


Theorem eftval

Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis eftval.1
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) )
Assertion eftval
|- ( N e. NN0 -> ( F ` N ) = ( ( A ^ N ) / ( ! ` N ) ) )

Proof

Step Hyp Ref Expression
1 eftval.1
 |-  F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) )
2 oveq2
 |-  ( n = N -> ( A ^ n ) = ( A ^ N ) )
3 fveq2
 |-  ( n = N -> ( ! ` n ) = ( ! ` N ) )
4 2 3 oveq12d
 |-  ( n = N -> ( ( A ^ n ) / ( ! ` n ) ) = ( ( A ^ N ) / ( ! ` N ) ) )
5 ovex
 |-  ( ( A ^ N ) / ( ! ` N ) ) e. _V
6 4 1 5 fvmpt
 |-  ( N e. NN0 -> ( F ` N ) = ( ( A ^ N ) / ( ! ` N ) ) )