Metamath Proof Explorer


Theorem efval

Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion efval
|- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) )

Proof

Step Hyp Ref Expression
1 oveq1
 |-  ( x = A -> ( x ^ k ) = ( A ^ k ) )
2 1 oveq1d
 |-  ( x = A -> ( ( x ^ k ) / ( ! ` k ) ) = ( ( A ^ k ) / ( ! ` k ) ) )
3 2 sumeq2sdv
 |-  ( x = A -> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) )
4 df-ef
 |-  exp = ( x e. CC |-> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) )
5 sumex
 |-  sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) e. _V
6 3 4 5 fvmpt
 |-  ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) )