Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( ( Lam ` A ) = 0 -> ( exp ` ( Lam ` A ) ) = ( exp ` 0 ) ) |
2 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
3 |
1 2
|
eqtrdi |
|- ( ( Lam ` A ) = 0 -> ( exp ` ( Lam ` A ) ) = 1 ) |
4 |
3
|
eleq1d |
|- ( ( Lam ` A ) = 0 -> ( ( exp ` ( Lam ` A ) ) e. NN <-> 1 e. NN ) ) |
5 |
|
isppw2 |
|- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
6 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
7 |
6
|
fveq2d |
|- ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( Lam ` ( p ^ k ) ) ) = ( exp ` ( log ` p ) ) ) |
8 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
9 |
8
|
nnrpd |
|- ( p e. Prime -> p e. RR+ ) |
10 |
9
|
reeflogd |
|- ( p e. Prime -> ( exp ` ( log ` p ) ) = p ) |
11 |
10 8
|
eqeltrd |
|- ( p e. Prime -> ( exp ` ( log ` p ) ) e. NN ) |
12 |
11
|
adantr |
|- ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( log ` p ) ) e. NN ) |
13 |
7 12
|
eqeltrd |
|- ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( Lam ` ( p ^ k ) ) ) e. NN ) |
14 |
|
fveq2 |
|- ( A = ( p ^ k ) -> ( Lam ` A ) = ( Lam ` ( p ^ k ) ) ) |
15 |
14
|
fveq2d |
|- ( A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) = ( exp ` ( Lam ` ( p ^ k ) ) ) ) |
16 |
15
|
eleq1d |
|- ( A = ( p ^ k ) -> ( ( exp ` ( Lam ` A ) ) e. NN <-> ( exp ` ( Lam ` ( p ^ k ) ) ) e. NN ) ) |
17 |
13 16
|
syl5ibrcom |
|- ( ( p e. Prime /\ k e. NN ) -> ( A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) e. NN ) ) |
18 |
17
|
rexlimivv |
|- ( E. p e. Prime E. k e. NN A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) e. NN ) |
19 |
5 18
|
syl6bi |
|- ( A e. NN -> ( ( Lam ` A ) =/= 0 -> ( exp ` ( Lam ` A ) ) e. NN ) ) |
20 |
19
|
imp |
|- ( ( A e. NN /\ ( Lam ` A ) =/= 0 ) -> ( exp ` ( Lam ` A ) ) e. NN ) |
21 |
|
1nn |
|- 1 e. NN |
22 |
21
|
a1i |
|- ( A e. NN -> 1 e. NN ) |
23 |
4 20 22
|
pm2.61ne |
|- ( A e. NN -> ( exp ` ( Lam ` A ) ) e. NN ) |