Step |
Hyp |
Ref |
Expression |
1 |
|
erelem1.1 |
|- F = ( n e. NN |-> ( 2 x. ( ( 1 / 2 ) ^ n ) ) ) |
2 |
|
erelem1.2 |
|- G = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
3 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
4 |
|
0nn0 |
|- 0 e. NN0 |
5 |
4
|
a1i |
|- ( T. -> 0 e. NN0 ) |
6 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
7 |
|
0z |
|- 0 e. ZZ |
8 |
|
fveq2 |
|- ( n = 0 -> ( ! ` n ) = ( ! ` 0 ) ) |
9 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
10 |
8 9
|
eqtrdi |
|- ( n = 0 -> ( ! ` n ) = 1 ) |
11 |
10
|
oveq2d |
|- ( n = 0 -> ( 1 / ( ! ` n ) ) = ( 1 / 1 ) ) |
12 |
|
ax-1cn |
|- 1 e. CC |
13 |
12
|
div1i |
|- ( 1 / 1 ) = 1 |
14 |
11 13
|
eqtrdi |
|- ( n = 0 -> ( 1 / ( ! ` n ) ) = 1 ) |
15 |
|
1ex |
|- 1 e. _V |
16 |
14 2 15
|
fvmpt |
|- ( 0 e. NN0 -> ( G ` 0 ) = 1 ) |
17 |
4 16
|
mp1i |
|- ( T. -> ( G ` 0 ) = 1 ) |
18 |
7 17
|
seq1i |
|- ( T. -> ( seq 0 ( + , G ) ` 0 ) = 1 ) |
19 |
|
1nn0 |
|- 1 e. NN0 |
20 |
|
fveq2 |
|- ( n = 1 -> ( ! ` n ) = ( ! ` 1 ) ) |
21 |
|
fac1 |
|- ( ! ` 1 ) = 1 |
22 |
20 21
|
eqtrdi |
|- ( n = 1 -> ( ! ` n ) = 1 ) |
23 |
22
|
oveq2d |
|- ( n = 1 -> ( 1 / ( ! ` n ) ) = ( 1 / 1 ) ) |
24 |
23 13
|
eqtrdi |
|- ( n = 1 -> ( 1 / ( ! ` n ) ) = 1 ) |
25 |
24 2 15
|
fvmpt |
|- ( 1 e. NN0 -> ( G ` 1 ) = 1 ) |
26 |
19 25
|
mp1i |
|- ( T. -> ( G ` 1 ) = 1 ) |
27 |
3 5 6 18 26
|
seqp1d |
|- ( T. -> ( seq 0 ( + , G ) ` 1 ) = ( 1 + 1 ) ) |
28 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
29 |
27 28
|
eqtr4di |
|- ( T. -> ( seq 0 ( + , G ) ` 1 ) = 2 ) |
30 |
19
|
a1i |
|- ( T. -> 1 e. NN0 ) |
31 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
32 |
|
1exp |
|- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
33 |
31 32
|
syl |
|- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
34 |
33
|
oveq1d |
|- ( n e. NN0 -> ( ( 1 ^ n ) / ( ! ` n ) ) = ( 1 / ( ! ` n ) ) ) |
35 |
34
|
mpteq2ia |
|- ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
36 |
2 35
|
eqtr4i |
|- G = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) |
37 |
36
|
efcvg |
|- ( 1 e. CC -> seq 0 ( + , G ) ~~> ( exp ` 1 ) ) |
38 |
12 37
|
mp1i |
|- ( T. -> seq 0 ( + , G ) ~~> ( exp ` 1 ) ) |
39 |
|
df-e |
|- _e = ( exp ` 1 ) |
40 |
38 39
|
breqtrrdi |
|- ( T. -> seq 0 ( + , G ) ~~> _e ) |
41 |
|
fveq2 |
|- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
42 |
41
|
oveq2d |
|- ( n = k -> ( 1 / ( ! ` n ) ) = ( 1 / ( ! ` k ) ) ) |
43 |
|
ovex |
|- ( 1 / ( ! ` k ) ) e. _V |
44 |
42 2 43
|
fvmpt |
|- ( k e. NN0 -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
45 |
44
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
46 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
47 |
46
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
48 |
47
|
nnrecred |
|- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) e. RR ) |
49 |
45 48
|
eqeltrd |
|- ( ( T. /\ k e. NN0 ) -> ( G ` k ) e. RR ) |
50 |
47
|
nnred |
|- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
51 |
47
|
nngt0d |
|- ( ( T. /\ k e. NN0 ) -> 0 < ( ! ` k ) ) |
52 |
|
1re |
|- 1 e. RR |
53 |
|
0le1 |
|- 0 <_ 1 |
54 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
55 |
52 53 54
|
mpanl12 |
|- ( ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
56 |
50 51 55
|
syl2anc |
|- ( ( T. /\ k e. NN0 ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
57 |
56 45
|
breqtrrd |
|- ( ( T. /\ k e. NN0 ) -> 0 <_ ( G ` k ) ) |
58 |
3 30 40 49 57
|
climserle |
|- ( T. -> ( seq 0 ( + , G ) ` 1 ) <_ _e ) |
59 |
29 58
|
eqbrtrrd |
|- ( T. -> 2 <_ _e ) |
60 |
59
|
mptru |
|- 2 <_ _e |
61 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
62 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
63 |
49
|
recnd |
|- ( ( T. /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
64 |
3 5 63 40
|
clim2ser |
|- ( T. -> seq ( 0 + 1 ) ( + , G ) ~~> ( _e - ( seq 0 ( + , G ) ` 0 ) ) ) |
65 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
66 |
|
seqeq1 |
|- ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , G ) = seq 1 ( + , G ) ) |
67 |
65 66
|
ax-mp |
|- seq ( 0 + 1 ) ( + , G ) = seq 1 ( + , G ) |
68 |
18
|
mptru |
|- ( seq 0 ( + , G ) ` 0 ) = 1 |
69 |
68
|
oveq2i |
|- ( _e - ( seq 0 ( + , G ) ` 0 ) ) = ( _e - 1 ) |
70 |
64 67 69
|
3brtr3g |
|- ( T. -> seq 1 ( + , G ) ~~> ( _e - 1 ) ) |
71 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
72 |
|
oveq2 |
|- ( n = k -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ k ) ) |
73 |
|
eqid |
|- ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
74 |
|
ovex |
|- ( ( 1 / 2 ) ^ k ) e. _V |
75 |
72 73 74
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
76 |
75
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
77 |
|
halfre |
|- ( 1 / 2 ) e. RR |
78 |
|
simpr |
|- ( ( T. /\ k e. NN0 ) -> k e. NN0 ) |
79 |
|
reexpcl |
|- ( ( ( 1 / 2 ) e. RR /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
80 |
77 78 79
|
sylancr |
|- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
81 |
80
|
recnd |
|- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. CC ) |
82 |
76 81
|
eqeltrd |
|- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) e. CC ) |
83 |
|
1lt2 |
|- 1 < 2 |
84 |
|
2re |
|- 2 e. RR |
85 |
|
0le2 |
|- 0 <_ 2 |
86 |
|
absid |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
87 |
84 85 86
|
mp2an |
|- ( abs ` 2 ) = 2 |
88 |
83 87
|
breqtrri |
|- 1 < ( abs ` 2 ) |
89 |
88
|
a1i |
|- ( T. -> 1 < ( abs ` 2 ) ) |
90 |
71 89 76
|
georeclim |
|- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> ( 2 / ( 2 - 1 ) ) ) |
91 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
92 |
91
|
oveq2i |
|- ( 2 / ( 2 - 1 ) ) = ( 2 / 1 ) |
93 |
|
2cn |
|- 2 e. CC |
94 |
93
|
div1i |
|- ( 2 / 1 ) = 2 |
95 |
92 94
|
eqtri |
|- ( 2 / ( 2 - 1 ) ) = 2 |
96 |
90 95
|
breqtrdi |
|- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> 2 ) |
97 |
3 5 82 96
|
clim2ser |
|- ( T. -> seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) ) |
98 |
|
seqeq1 |
|- ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) = seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ) |
99 |
65 98
|
ax-mp |
|- seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) = seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) |
100 |
|
oveq2 |
|- ( n = 0 -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ 0 ) ) |
101 |
|
ovex |
|- ( ( 1 / 2 ) ^ 0 ) e. _V |
102 |
100 73 101
|
fvmpt |
|- ( 0 e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = ( ( 1 / 2 ) ^ 0 ) ) |
103 |
4 102
|
ax-mp |
|- ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = ( ( 1 / 2 ) ^ 0 ) |
104 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
105 |
|
exp0 |
|- ( ( 1 / 2 ) e. CC -> ( ( 1 / 2 ) ^ 0 ) = 1 ) |
106 |
104 105
|
ax-mp |
|- ( ( 1 / 2 ) ^ 0 ) = 1 |
107 |
103 106
|
eqtri |
|- ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = 1 |
108 |
107
|
a1i |
|- ( T. -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = 1 ) |
109 |
7 108
|
seq1i |
|- ( T. -> ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) = 1 ) |
110 |
109
|
mptru |
|- ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) = 1 |
111 |
110
|
oveq2i |
|- ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) = ( 2 - 1 ) |
112 |
111 91
|
eqtri |
|- ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) = 1 |
113 |
97 99 112
|
3brtr3g |
|- ( T. -> seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> 1 ) |
114 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
115 |
114 82
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) e. CC ) |
116 |
72
|
oveq2d |
|- ( n = k -> ( 2 x. ( ( 1 / 2 ) ^ n ) ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
117 |
|
ovex |
|- ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. _V |
118 |
116 1 117
|
fvmpt |
|- ( k e. NN -> ( F ` k ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
119 |
118
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
120 |
114 76
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
121 |
120
|
oveq2d |
|- ( ( T. /\ k e. NN ) -> ( 2 x. ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
122 |
119 121
|
eqtr4d |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 2 x. ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) ) ) |
123 |
61 62 71 113 115 122
|
isermulc2 |
|- ( T. -> seq 1 ( + , F ) ~~> ( 2 x. 1 ) ) |
124 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
125 |
123 124
|
breqtrdi |
|- ( T. -> seq 1 ( + , F ) ~~> 2 ) |
126 |
114 49
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
127 |
|
remulcl |
|- ( ( 2 e. RR /\ ( ( 1 / 2 ) ^ k ) e. RR ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
128 |
84 80 127
|
sylancr |
|- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
129 |
114 128
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
130 |
119 129
|
eqeltrd |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
131 |
|
faclbnd2 |
|- ( k e. NN0 -> ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) ) |
132 |
131
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) ) |
133 |
|
2nn |
|- 2 e. NN |
134 |
|
nnexpcl |
|- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
135 |
133 78 134
|
sylancr |
|- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
136 |
135
|
nnrpd |
|- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. RR+ ) |
137 |
136
|
rphalfcld |
|- ( ( T. /\ k e. NN0 ) -> ( ( 2 ^ k ) / 2 ) e. RR+ ) |
138 |
47
|
nnrpd |
|- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. RR+ ) |
139 |
137 138
|
lerecd |
|- ( ( T. /\ k e. NN0 ) -> ( ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) <-> ( 1 / ( ! ` k ) ) <_ ( 1 / ( ( 2 ^ k ) / 2 ) ) ) ) |
140 |
132 139
|
mpbid |
|- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) <_ ( 1 / ( ( 2 ^ k ) / 2 ) ) ) |
141 |
|
2cnd |
|- ( ( T. /\ k e. NN0 ) -> 2 e. CC ) |
142 |
135
|
nncnd |
|- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. CC ) |
143 |
135
|
nnne0d |
|- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) =/= 0 ) |
144 |
141 142 143
|
divrecd |
|- ( ( T. /\ k e. NN0 ) -> ( 2 / ( 2 ^ k ) ) = ( 2 x. ( 1 / ( 2 ^ k ) ) ) ) |
145 |
|
2ne0 |
|- 2 =/= 0 |
146 |
|
recdiv |
|- ( ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
147 |
93 145 146
|
mpanr12 |
|- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
148 |
142 143 147
|
syl2anc |
|- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
149 |
145
|
a1i |
|- ( ( T. /\ k e. NN0 ) -> 2 =/= 0 ) |
150 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
151 |
150
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> k e. ZZ ) |
152 |
141 149 151
|
exprecd |
|- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) = ( 1 / ( 2 ^ k ) ) ) |
153 |
152
|
oveq2d |
|- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) = ( 2 x. ( 1 / ( 2 ^ k ) ) ) ) |
154 |
144 148 153
|
3eqtr4rd |
|- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) = ( 1 / ( ( 2 ^ k ) / 2 ) ) ) |
155 |
140 154
|
breqtrrd |
|- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) <_ ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
156 |
114 155
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( 1 / ( ! ` k ) ) <_ ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
157 |
114 45
|
sylan2 |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
158 |
156 157 119
|
3brtr4d |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` k ) ) |
159 |
61 62 70 125 126 130 158
|
iserle |
|- ( T. -> ( _e - 1 ) <_ 2 ) |
160 |
159
|
mptru |
|- ( _e - 1 ) <_ 2 |
161 |
|
ere |
|- _e e. RR |
162 |
161 52 84
|
lesubaddi |
|- ( ( _e - 1 ) <_ 2 <-> _e <_ ( 2 + 1 ) ) |
163 |
160 162
|
mpbi |
|- _e <_ ( 2 + 1 ) |
164 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
165 |
163 164
|
breqtrri |
|- _e <_ 3 |
166 |
60 165
|
pm3.2i |
|- ( 2 <_ _e /\ _e <_ 3 ) |