| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erelem1.1 |  |-  F = ( n e. NN |-> ( 2 x. ( ( 1 / 2 ) ^ n ) ) ) | 
						
							| 2 |  | erelem1.2 |  |-  G = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) | 
						
							| 3 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 4 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 5 | 4 | a1i |  |-  ( T. -> 0 e. NN0 ) | 
						
							| 6 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 7 |  | 0z |  |-  0 e. ZZ | 
						
							| 8 |  | fveq2 |  |-  ( n = 0 -> ( ! ` n ) = ( ! ` 0 ) ) | 
						
							| 9 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( n = 0 -> ( ! ` n ) = 1 ) | 
						
							| 11 | 10 | oveq2d |  |-  ( n = 0 -> ( 1 / ( ! ` n ) ) = ( 1 / 1 ) ) | 
						
							| 12 |  | ax-1cn |  |-  1 e. CC | 
						
							| 13 | 12 | div1i |  |-  ( 1 / 1 ) = 1 | 
						
							| 14 | 11 13 | eqtrdi |  |-  ( n = 0 -> ( 1 / ( ! ` n ) ) = 1 ) | 
						
							| 15 |  | 1ex |  |-  1 e. _V | 
						
							| 16 | 14 2 15 | fvmpt |  |-  ( 0 e. NN0 -> ( G ` 0 ) = 1 ) | 
						
							| 17 | 4 16 | mp1i |  |-  ( T. -> ( G ` 0 ) = 1 ) | 
						
							| 18 | 7 17 | seq1i |  |-  ( T. -> ( seq 0 ( + , G ) ` 0 ) = 1 ) | 
						
							| 19 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 20 |  | fveq2 |  |-  ( n = 1 -> ( ! ` n ) = ( ! ` 1 ) ) | 
						
							| 21 |  | fac1 |  |-  ( ! ` 1 ) = 1 | 
						
							| 22 | 20 21 | eqtrdi |  |-  ( n = 1 -> ( ! ` n ) = 1 ) | 
						
							| 23 | 22 | oveq2d |  |-  ( n = 1 -> ( 1 / ( ! ` n ) ) = ( 1 / 1 ) ) | 
						
							| 24 | 23 13 | eqtrdi |  |-  ( n = 1 -> ( 1 / ( ! ` n ) ) = 1 ) | 
						
							| 25 | 24 2 15 | fvmpt |  |-  ( 1 e. NN0 -> ( G ` 1 ) = 1 ) | 
						
							| 26 | 19 25 | mp1i |  |-  ( T. -> ( G ` 1 ) = 1 ) | 
						
							| 27 | 3 5 6 18 26 | seqp1d |  |-  ( T. -> ( seq 0 ( + , G ) ` 1 ) = ( 1 + 1 ) ) | 
						
							| 28 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 29 | 27 28 | eqtr4di |  |-  ( T. -> ( seq 0 ( + , G ) ` 1 ) = 2 ) | 
						
							| 30 | 19 | a1i |  |-  ( T. -> 1 e. NN0 ) | 
						
							| 31 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 32 |  | 1exp |  |-  ( n e. ZZ -> ( 1 ^ n ) = 1 ) | 
						
							| 33 | 31 32 | syl |  |-  ( n e. NN0 -> ( 1 ^ n ) = 1 ) | 
						
							| 34 | 33 | oveq1d |  |-  ( n e. NN0 -> ( ( 1 ^ n ) / ( ! ` n ) ) = ( 1 / ( ! ` n ) ) ) | 
						
							| 35 | 34 | mpteq2ia |  |-  ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) | 
						
							| 36 | 2 35 | eqtr4i |  |-  G = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) | 
						
							| 37 | 36 | efcvg |  |-  ( 1 e. CC -> seq 0 ( + , G ) ~~> ( exp ` 1 ) ) | 
						
							| 38 | 12 37 | mp1i |  |-  ( T. -> seq 0 ( + , G ) ~~> ( exp ` 1 ) ) | 
						
							| 39 |  | df-e |  |-  _e = ( exp ` 1 ) | 
						
							| 40 | 38 39 | breqtrrdi |  |-  ( T. -> seq 0 ( + , G ) ~~> _e ) | 
						
							| 41 |  | fveq2 |  |-  ( n = k -> ( ! ` n ) = ( ! ` k ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( n = k -> ( 1 / ( ! ` n ) ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 43 |  | ovex |  |-  ( 1 / ( ! ` k ) ) e. _V | 
						
							| 44 | 42 2 43 | fvmpt |  |-  ( k e. NN0 -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 46 |  | faccl |  |-  ( k e. NN0 -> ( ! ` k ) e. NN ) | 
						
							| 47 | 46 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. NN ) | 
						
							| 48 | 47 | nnrecred |  |-  ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) e. RR ) | 
						
							| 49 | 45 48 | eqeltrd |  |-  ( ( T. /\ k e. NN0 ) -> ( G ` k ) e. RR ) | 
						
							| 50 | 47 | nnred |  |-  ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. RR ) | 
						
							| 51 | 47 | nngt0d |  |-  ( ( T. /\ k e. NN0 ) -> 0 < ( ! ` k ) ) | 
						
							| 52 |  | 1re |  |-  1 e. RR | 
						
							| 53 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 54 |  | divge0 |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> 0 <_ ( 1 / ( ! ` k ) ) ) | 
						
							| 55 | 52 53 54 | mpanl12 |  |-  ( ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) -> 0 <_ ( 1 / ( ! ` k ) ) ) | 
						
							| 56 | 50 51 55 | syl2anc |  |-  ( ( T. /\ k e. NN0 ) -> 0 <_ ( 1 / ( ! ` k ) ) ) | 
						
							| 57 | 56 45 | breqtrrd |  |-  ( ( T. /\ k e. NN0 ) -> 0 <_ ( G ` k ) ) | 
						
							| 58 | 3 30 40 49 57 | climserle |  |-  ( T. -> ( seq 0 ( + , G ) ` 1 ) <_ _e ) | 
						
							| 59 | 29 58 | eqbrtrrd |  |-  ( T. -> 2 <_ _e ) | 
						
							| 60 | 59 | mptru |  |-  2 <_ _e | 
						
							| 61 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 62 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 63 | 49 | recnd |  |-  ( ( T. /\ k e. NN0 ) -> ( G ` k ) e. CC ) | 
						
							| 64 | 3 5 63 40 | clim2ser |  |-  ( T. -> seq ( 0 + 1 ) ( + , G ) ~~> ( _e - ( seq 0 ( + , G ) ` 0 ) ) ) | 
						
							| 65 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 66 |  | seqeq1 |  |-  ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , G ) = seq 1 ( + , G ) ) | 
						
							| 67 | 65 66 | ax-mp |  |-  seq ( 0 + 1 ) ( + , G ) = seq 1 ( + , G ) | 
						
							| 68 | 18 | mptru |  |-  ( seq 0 ( + , G ) ` 0 ) = 1 | 
						
							| 69 | 68 | oveq2i |  |-  ( _e - ( seq 0 ( + , G ) ` 0 ) ) = ( _e - 1 ) | 
						
							| 70 | 64 67 69 | 3brtr3g |  |-  ( T. -> seq 1 ( + , G ) ~~> ( _e - 1 ) ) | 
						
							| 71 |  | 2cnd |  |-  ( T. -> 2 e. CC ) | 
						
							| 72 |  | oveq2 |  |-  ( n = k -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 73 |  | eqid |  |-  ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) | 
						
							| 74 |  | ovex |  |-  ( ( 1 / 2 ) ^ k ) e. _V | 
						
							| 75 | 72 73 74 | fvmpt |  |-  ( k e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 76 | 75 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 77 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 78 |  | simpr |  |-  ( ( T. /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 79 |  | reexpcl |  |-  ( ( ( 1 / 2 ) e. RR /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. RR ) | 
						
							| 80 | 77 78 79 | sylancr |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. RR ) | 
						
							| 81 | 80 | recnd |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. CC ) | 
						
							| 82 | 76 81 | eqeltrd |  |-  ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) e. CC ) | 
						
							| 83 |  | 1lt2 |  |-  1 < 2 | 
						
							| 84 |  | 2re |  |-  2 e. RR | 
						
							| 85 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 86 |  | absid |  |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) | 
						
							| 87 | 84 85 86 | mp2an |  |-  ( abs ` 2 ) = 2 | 
						
							| 88 | 83 87 | breqtrri |  |-  1 < ( abs ` 2 ) | 
						
							| 89 | 88 | a1i |  |-  ( T. -> 1 < ( abs ` 2 ) ) | 
						
							| 90 | 71 89 76 | georeclim |  |-  ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> ( 2 / ( 2 - 1 ) ) ) | 
						
							| 91 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 92 | 91 | oveq2i |  |-  ( 2 / ( 2 - 1 ) ) = ( 2 / 1 ) | 
						
							| 93 |  | 2cn |  |-  2 e. CC | 
						
							| 94 | 93 | div1i |  |-  ( 2 / 1 ) = 2 | 
						
							| 95 | 92 94 | eqtri |  |-  ( 2 / ( 2 - 1 ) ) = 2 | 
						
							| 96 | 90 95 | breqtrdi |  |-  ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> 2 ) | 
						
							| 97 | 3 5 82 96 | clim2ser |  |-  ( T. -> seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) ) | 
						
							| 98 |  | seqeq1 |  |-  ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) = seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ) | 
						
							| 99 | 65 98 | ax-mp |  |-  seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) = seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) | 
						
							| 100 |  | oveq2 |  |-  ( n = 0 -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ 0 ) ) | 
						
							| 101 |  | ovex |  |-  ( ( 1 / 2 ) ^ 0 ) e. _V | 
						
							| 102 | 100 73 101 | fvmpt |  |-  ( 0 e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = ( ( 1 / 2 ) ^ 0 ) ) | 
						
							| 103 | 4 102 | ax-mp |  |-  ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = ( ( 1 / 2 ) ^ 0 ) | 
						
							| 104 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 105 |  | exp0 |  |-  ( ( 1 / 2 ) e. CC -> ( ( 1 / 2 ) ^ 0 ) = 1 ) | 
						
							| 106 | 104 105 | ax-mp |  |-  ( ( 1 / 2 ) ^ 0 ) = 1 | 
						
							| 107 | 103 106 | eqtri |  |-  ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = 1 | 
						
							| 108 | 107 | a1i |  |-  ( T. -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = 1 ) | 
						
							| 109 | 7 108 | seq1i |  |-  ( T. -> ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) = 1 ) | 
						
							| 110 | 109 | mptru |  |-  ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) = 1 | 
						
							| 111 | 110 | oveq2i |  |-  ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) = ( 2 - 1 ) | 
						
							| 112 | 111 91 | eqtri |  |-  ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) = 1 | 
						
							| 113 | 97 99 112 | 3brtr3g |  |-  ( T. -> seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> 1 ) | 
						
							| 114 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 115 | 114 82 | sylan2 |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) e. CC ) | 
						
							| 116 | 72 | oveq2d |  |-  ( n = k -> ( 2 x. ( ( 1 / 2 ) ^ n ) ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 117 |  | ovex |  |-  ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. _V | 
						
							| 118 | 116 1 117 | fvmpt |  |-  ( k e. NN -> ( F ` k ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 119 | 118 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 120 | 114 76 | sylan2 |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 121 | 120 | oveq2d |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 122 | 119 121 | eqtr4d |  |-  ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 2 x. ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) ) ) | 
						
							| 123 | 61 62 71 113 115 122 | isermulc2 |  |-  ( T. -> seq 1 ( + , F ) ~~> ( 2 x. 1 ) ) | 
						
							| 124 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 125 | 123 124 | breqtrdi |  |-  ( T. -> seq 1 ( + , F ) ~~> 2 ) | 
						
							| 126 | 114 49 | sylan2 |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) | 
						
							| 127 |  | remulcl |  |-  ( ( 2 e. RR /\ ( ( 1 / 2 ) ^ k ) e. RR ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) | 
						
							| 128 | 84 80 127 | sylancr |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) | 
						
							| 129 | 114 128 | sylan2 |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) | 
						
							| 130 | 119 129 | eqeltrd |  |-  ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) | 
						
							| 131 |  | faclbnd2 |  |-  ( k e. NN0 -> ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) ) | 
						
							| 132 | 131 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) ) | 
						
							| 133 |  | 2nn |  |-  2 e. NN | 
						
							| 134 |  | nnexpcl |  |-  ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) | 
						
							| 135 | 133 78 134 | sylancr |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) | 
						
							| 136 | 135 | nnrpd |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. RR+ ) | 
						
							| 137 | 136 | rphalfcld |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 2 ^ k ) / 2 ) e. RR+ ) | 
						
							| 138 | 47 | nnrpd |  |-  ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. RR+ ) | 
						
							| 139 | 137 138 | lerecd |  |-  ( ( T. /\ k e. NN0 ) -> ( ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) <-> ( 1 / ( ! ` k ) ) <_ ( 1 / ( ( 2 ^ k ) / 2 ) ) ) ) | 
						
							| 140 | 132 139 | mpbid |  |-  ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) <_ ( 1 / ( ( 2 ^ k ) / 2 ) ) ) | 
						
							| 141 |  | 2cnd |  |-  ( ( T. /\ k e. NN0 ) -> 2 e. CC ) | 
						
							| 142 | 135 | nncnd |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. CC ) | 
						
							| 143 | 135 | nnne0d |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) =/= 0 ) | 
						
							| 144 | 141 142 143 | divrecd |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 / ( 2 ^ k ) ) = ( 2 x. ( 1 / ( 2 ^ k ) ) ) ) | 
						
							| 145 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 146 |  | recdiv |  |-  ( ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) | 
						
							| 147 | 93 145 146 | mpanr12 |  |-  ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) | 
						
							| 148 | 142 143 147 | syl2anc |  |-  ( ( T. /\ k e. NN0 ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) | 
						
							| 149 | 145 | a1i |  |-  ( ( T. /\ k e. NN0 ) -> 2 =/= 0 ) | 
						
							| 150 |  | nn0z |  |-  ( k e. NN0 -> k e. ZZ ) | 
						
							| 151 | 150 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> k e. ZZ ) | 
						
							| 152 | 141 149 151 | exprecd |  |-  ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) = ( 1 / ( 2 ^ k ) ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) = ( 2 x. ( 1 / ( 2 ^ k ) ) ) ) | 
						
							| 154 | 144 148 153 | 3eqtr4rd |  |-  ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) = ( 1 / ( ( 2 ^ k ) / 2 ) ) ) | 
						
							| 155 | 140 154 | breqtrrd |  |-  ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) <_ ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 156 | 114 155 | sylan2 |  |-  ( ( T. /\ k e. NN ) -> ( 1 / ( ! ` k ) ) <_ ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 157 | 114 45 | sylan2 |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 158 | 156 157 119 | 3brtr4d |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` k ) ) | 
						
							| 159 | 61 62 70 125 126 130 158 | iserle |  |-  ( T. -> ( _e - 1 ) <_ 2 ) | 
						
							| 160 | 159 | mptru |  |-  ( _e - 1 ) <_ 2 | 
						
							| 161 |  | ere |  |-  _e e. RR | 
						
							| 162 | 161 52 84 | lesubaddi |  |-  ( ( _e - 1 ) <_ 2 <-> _e <_ ( 2 + 1 ) ) | 
						
							| 163 | 160 162 | mpbi |  |-  _e <_ ( 2 + 1 ) | 
						
							| 164 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 165 | 163 164 | breqtrri |  |-  _e <_ 3 | 
						
							| 166 | 60 165 | pm3.2i |  |-  ( 2 <_ _e /\ _e <_ 3 ) |