Step |
Hyp |
Ref |
Expression |
1 |
|
ehl0base.e |
|- E = ( EEhil ` 0 ) |
2 |
|
ehl0base.0 |
|- .0. = ( 0g ` E ) |
3 |
1
|
ehl0base |
|- ( Base ` E ) = { (/) } |
4 |
|
ovex |
|- ( 1 ... 0 ) e. _V |
5 |
|
0nn0 |
|- 0 e. NN0 |
6 |
1
|
ehlval |
|- ( 0 e. NN0 -> E = ( RR^ ` ( 1 ... 0 ) ) ) |
7 |
5 6
|
ax-mp |
|- E = ( RR^ ` ( 1 ... 0 ) ) |
8 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
9 |
8
|
xpeq1i |
|- ( ( 1 ... 0 ) X. { 0 } ) = ( (/) X. { 0 } ) |
10 |
9
|
eqcomi |
|- ( (/) X. { 0 } ) = ( ( 1 ... 0 ) X. { 0 } ) |
11 |
7 10
|
rrx0 |
|- ( ( 1 ... 0 ) e. _V -> ( 0g ` E ) = ( (/) X. { 0 } ) ) |
12 |
4 11
|
ax-mp |
|- ( 0g ` E ) = ( (/) X. { 0 } ) |
13 |
2 12
|
eqtri |
|- .0. = ( (/) X. { 0 } ) |
14 |
|
0xp |
|- ( (/) X. { 0 } ) = (/) |
15 |
13 14
|
eqtri |
|- .0. = (/) |
16 |
15
|
eqcomi |
|- (/) = .0. |
17 |
16
|
sneqi |
|- { (/) } = { .0. } |
18 |
3 17
|
eqtri |
|- ( Base ` E ) = { .0. } |