Metamath Proof Explorer


Theorem ehl0base

Description: The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023)

Ref Expression
Hypothesis ehl0base.e
|- E = ( EEhil ` 0 )
Assertion ehl0base
|- ( Base ` E ) = { (/) }

Proof

Step Hyp Ref Expression
1 ehl0base.e
 |-  E = ( EEhil ` 0 )
2 0nn0
 |-  0 e. NN0
3 1 ehlbase
 |-  ( 0 e. NN0 -> ( RR ^m ( 1 ... 0 ) ) = ( Base ` E ) )
4 3 eqcomd
 |-  ( 0 e. NN0 -> ( Base ` E ) = ( RR ^m ( 1 ... 0 ) ) )
5 2 4 ax-mp
 |-  ( Base ` E ) = ( RR ^m ( 1 ... 0 ) )
6 fz10
 |-  ( 1 ... 0 ) = (/)
7 6 oveq2i
 |-  ( RR ^m ( 1 ... 0 ) ) = ( RR ^m (/) )
8 reex
 |-  RR e. _V
9 mapdm0
 |-  ( RR e. _V -> ( RR ^m (/) ) = { (/) } )
10 8 9 ax-mp
 |-  ( RR ^m (/) ) = { (/) }
11 5 7 10 3eqtri
 |-  ( Base ` E ) = { (/) }