| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl1eudis.e |
|- E = ( EEhil ` 1 ) |
| 2 |
|
ehl1eudis.x |
|- X = ( RR ^m { 1 } ) |
| 3 |
|
ehl1eudis.d |
|- D = ( dist ` E ) |
| 4 |
|
1nn0 |
|- 1 e. NN0 |
| 5 |
|
1z |
|- 1 e. ZZ |
| 6 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 7 |
5 6
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 8 |
7
|
eqcomi |
|- { 1 } = ( 1 ... 1 ) |
| 9 |
8 1 2 3
|
ehleudis |
|- ( 1 e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 10 |
4 9
|
ax-mp |
|- D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
| 11 |
2
|
eleq2i |
|- ( f e. X <-> f e. ( RR ^m { 1 } ) ) |
| 12 |
|
reex |
|- RR e. _V |
| 13 |
|
snex |
|- { 1 } e. _V |
| 14 |
12 13
|
elmap |
|- ( f e. ( RR ^m { 1 } ) <-> f : { 1 } --> RR ) |
| 15 |
11 14
|
bitri |
|- ( f e. X <-> f : { 1 } --> RR ) |
| 16 |
|
id |
|- ( f : { 1 } --> RR -> f : { 1 } --> RR ) |
| 17 |
|
1ex |
|- 1 e. _V |
| 18 |
17
|
snid |
|- 1 e. { 1 } |
| 19 |
18
|
a1i |
|- ( f : { 1 } --> RR -> 1 e. { 1 } ) |
| 20 |
16 19
|
ffvelcdmd |
|- ( f : { 1 } --> RR -> ( f ` 1 ) e. RR ) |
| 21 |
15 20
|
sylbi |
|- ( f e. X -> ( f ` 1 ) e. RR ) |
| 22 |
21
|
adantr |
|- ( ( f e. X /\ g e. X ) -> ( f ` 1 ) e. RR ) |
| 23 |
2
|
eleq2i |
|- ( g e. X <-> g e. ( RR ^m { 1 } ) ) |
| 24 |
12 13
|
elmap |
|- ( g e. ( RR ^m { 1 } ) <-> g : { 1 } --> RR ) |
| 25 |
23 24
|
bitri |
|- ( g e. X <-> g : { 1 } --> RR ) |
| 26 |
|
id |
|- ( g : { 1 } --> RR -> g : { 1 } --> RR ) |
| 27 |
18
|
a1i |
|- ( g : { 1 } --> RR -> 1 e. { 1 } ) |
| 28 |
26 27
|
ffvelcdmd |
|- ( g : { 1 } --> RR -> ( g ` 1 ) e. RR ) |
| 29 |
25 28
|
sylbi |
|- ( g e. X -> ( g ` 1 ) e. RR ) |
| 30 |
29
|
adantl |
|- ( ( f e. X /\ g e. X ) -> ( g ` 1 ) e. RR ) |
| 31 |
22 30
|
resubcld |
|- ( ( f e. X /\ g e. X ) -> ( ( f ` 1 ) - ( g ` 1 ) ) e. RR ) |
| 32 |
31
|
resqcld |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. RR ) |
| 33 |
32
|
recnd |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC ) |
| 34 |
|
fveq2 |
|- ( k = 1 -> ( f ` k ) = ( f ` 1 ) ) |
| 35 |
|
fveq2 |
|- ( k = 1 -> ( g ` k ) = ( g ` 1 ) ) |
| 36 |
34 35
|
oveq12d |
|- ( k = 1 -> ( ( f ` k ) - ( g ` k ) ) = ( ( f ` 1 ) - ( g ` 1 ) ) ) |
| 37 |
36
|
oveq1d |
|- ( k = 1 -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) |
| 38 |
37
|
sumsn |
|- ( ( 1 e. ZZ /\ ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC ) -> sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) |
| 39 |
5 33 38
|
sylancr |
|- ( ( f e. X /\ g e. X ) -> sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) |
| 40 |
39
|
fveq2d |
|- ( ( f e. X /\ g e. X ) -> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) ) |
| 41 |
31
|
absred |
|- ( ( f e. X /\ g e. X ) -> ( abs ` ( ( f ` 1 ) - ( g ` 1 ) ) ) = ( sqrt ` ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) ) |
| 42 |
40 41
|
eqtr4d |
|- ( ( f e. X /\ g e. X ) -> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( abs ` ( ( f ` 1 ) - ( g ` 1 ) ) ) ) |
| 43 |
42
|
mpoeq3ia |
|- ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( f e. X , g e. X |-> ( abs ` ( ( f ` 1 ) - ( g ` 1 ) ) ) ) |
| 44 |
10 43
|
eqtri |
|- D = ( f e. X , g e. X |-> ( abs ` ( ( f ` 1 ) - ( g ` 1 ) ) ) ) |