| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl2eudis.e |  |-  E = ( EEhil ` 2 ) | 
						
							| 2 |  | ehl2eudis.x |  |-  X = ( RR ^m { 1 , 2 } ) | 
						
							| 3 |  | ehl2eudis.d |  |-  D = ( dist ` E ) | 
						
							| 4 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 5 |  | fz12pr |  |-  ( 1 ... 2 ) = { 1 , 2 } | 
						
							| 6 | 5 | eqcomi |  |-  { 1 , 2 } = ( 1 ... 2 ) | 
						
							| 7 | 6 1 2 3 | ehleudis |  |-  ( 2 e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 8 | 4 7 | ax-mp |  |-  D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( k = 1 -> ( f ` k ) = ( f ` 1 ) ) | 
						
							| 10 |  | fveq2 |  |-  ( k = 1 -> ( g ` k ) = ( g ` 1 ) ) | 
						
							| 11 | 9 10 | oveq12d |  |-  ( k = 1 -> ( ( f ` k ) - ( g ` k ) ) = ( ( f ` 1 ) - ( g ` 1 ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( k = 1 -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) | 
						
							| 13 |  | fveq2 |  |-  ( k = 2 -> ( f ` k ) = ( f ` 2 ) ) | 
						
							| 14 |  | fveq2 |  |-  ( k = 2 -> ( g ` k ) = ( g ` 2 ) ) | 
						
							| 15 | 13 14 | oveq12d |  |-  ( k = 2 -> ( ( f ` k ) - ( g ` k ) ) = ( ( f ` 2 ) - ( g ` 2 ) ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( k = 2 -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) | 
						
							| 17 | 2 | eleq2i |  |-  ( f e. X <-> f e. ( RR ^m { 1 , 2 } ) ) | 
						
							| 18 |  | reex |  |-  RR e. _V | 
						
							| 19 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 20 | 18 19 | elmap |  |-  ( f e. ( RR ^m { 1 , 2 } ) <-> f : { 1 , 2 } --> RR ) | 
						
							| 21 | 17 20 | bitri |  |-  ( f e. X <-> f : { 1 , 2 } --> RR ) | 
						
							| 22 |  | id |  |-  ( f : { 1 , 2 } --> RR -> f : { 1 , 2 } --> RR ) | 
						
							| 23 |  | 1ex |  |-  1 e. _V | 
						
							| 24 | 23 | prid1 |  |-  1 e. { 1 , 2 } | 
						
							| 25 | 24 | a1i |  |-  ( f : { 1 , 2 } --> RR -> 1 e. { 1 , 2 } ) | 
						
							| 26 | 22 25 | ffvelcdmd |  |-  ( f : { 1 , 2 } --> RR -> ( f ` 1 ) e. RR ) | 
						
							| 27 | 21 26 | sylbi |  |-  ( f e. X -> ( f ` 1 ) e. RR ) | 
						
							| 28 | 27 | adantr |  |-  ( ( f e. X /\ g e. X ) -> ( f ` 1 ) e. RR ) | 
						
							| 29 | 2 | eleq2i |  |-  ( g e. X <-> g e. ( RR ^m { 1 , 2 } ) ) | 
						
							| 30 | 18 19 | elmap |  |-  ( g e. ( RR ^m { 1 , 2 } ) <-> g : { 1 , 2 } --> RR ) | 
						
							| 31 | 29 30 | bitri |  |-  ( g e. X <-> g : { 1 , 2 } --> RR ) | 
						
							| 32 |  | id |  |-  ( g : { 1 , 2 } --> RR -> g : { 1 , 2 } --> RR ) | 
						
							| 33 | 24 | a1i |  |-  ( g : { 1 , 2 } --> RR -> 1 e. { 1 , 2 } ) | 
						
							| 34 | 32 33 | ffvelcdmd |  |-  ( g : { 1 , 2 } --> RR -> ( g ` 1 ) e. RR ) | 
						
							| 35 | 31 34 | sylbi |  |-  ( g e. X -> ( g ` 1 ) e. RR ) | 
						
							| 36 | 35 | adantl |  |-  ( ( f e. X /\ g e. X ) -> ( g ` 1 ) e. RR ) | 
						
							| 37 | 28 36 | resubcld |  |-  ( ( f e. X /\ g e. X ) -> ( ( f ` 1 ) - ( g ` 1 ) ) e. RR ) | 
						
							| 38 | 37 | resqcld |  |-  ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. RR ) | 
						
							| 39 | 38 | recnd |  |-  ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC ) | 
						
							| 40 |  | 2ex |  |-  2 e. _V | 
						
							| 41 | 40 | prid2 |  |-  2 e. { 1 , 2 } | 
						
							| 42 | 41 | a1i |  |-  ( f : { 1 , 2 } --> RR -> 2 e. { 1 , 2 } ) | 
						
							| 43 | 22 42 | ffvelcdmd |  |-  ( f : { 1 , 2 } --> RR -> ( f ` 2 ) e. RR ) | 
						
							| 44 | 21 43 | sylbi |  |-  ( f e. X -> ( f ` 2 ) e. RR ) | 
						
							| 45 | 44 | adantr |  |-  ( ( f e. X /\ g e. X ) -> ( f ` 2 ) e. RR ) | 
						
							| 46 | 41 | a1i |  |-  ( g : { 1 , 2 } --> RR -> 2 e. { 1 , 2 } ) | 
						
							| 47 | 32 46 | ffvelcdmd |  |-  ( g : { 1 , 2 } --> RR -> ( g ` 2 ) e. RR ) | 
						
							| 48 | 31 47 | sylbi |  |-  ( g e. X -> ( g ` 2 ) e. RR ) | 
						
							| 49 | 48 | adantl |  |-  ( ( f e. X /\ g e. X ) -> ( g ` 2 ) e. RR ) | 
						
							| 50 | 45 49 | resubcld |  |-  ( ( f e. X /\ g e. X ) -> ( ( f ` 2 ) - ( g ` 2 ) ) e. RR ) | 
						
							| 51 | 50 | resqcld |  |-  ( ( f e. X /\ g e. X ) -> ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. RR ) | 
						
							| 52 | 51 | recnd |  |-  ( ( f e. X /\ g e. X ) -> ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. CC ) | 
						
							| 53 | 39 52 | jca |  |-  ( ( f e. X /\ g e. X ) -> ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC /\ ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. CC ) ) | 
						
							| 54 | 23 40 | pm3.2i |  |-  ( 1 e. _V /\ 2 e. _V ) | 
						
							| 55 | 54 | a1i |  |-  ( ( f e. X /\ g e. X ) -> ( 1 e. _V /\ 2 e. _V ) ) | 
						
							| 56 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 57 | 56 | a1i |  |-  ( ( f e. X /\ g e. X ) -> 1 =/= 2 ) | 
						
							| 58 | 12 16 53 55 57 | sumpr |  |-  ( ( f e. X /\ g e. X ) -> sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) | 
						
							| 59 | 58 | fveq2d |  |-  ( ( f e. X /\ g e. X ) -> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 60 | 59 | mpoeq3ia |  |-  ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 61 | 8 60 | eqtri |  |-  D = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) |