Step |
Hyp |
Ref |
Expression |
1 |
|
ehl2eudis.e |
|- E = ( EEhil ` 2 ) |
2 |
|
ehl2eudis.x |
|- X = ( RR ^m { 1 , 2 } ) |
3 |
|
ehl2eudis.d |
|- D = ( dist ` E ) |
4 |
|
2nn0 |
|- 2 e. NN0 |
5 |
|
fz12pr |
|- ( 1 ... 2 ) = { 1 , 2 } |
6 |
5
|
eqcomi |
|- { 1 , 2 } = ( 1 ... 2 ) |
7 |
6 1 2 3
|
ehleudis |
|- ( 2 e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
8 |
4 7
|
ax-mp |
|- D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
9 |
|
fveq2 |
|- ( k = 1 -> ( f ` k ) = ( f ` 1 ) ) |
10 |
|
fveq2 |
|- ( k = 1 -> ( g ` k ) = ( g ` 1 ) ) |
11 |
9 10
|
oveq12d |
|- ( k = 1 -> ( ( f ` k ) - ( g ` k ) ) = ( ( f ` 1 ) - ( g ` 1 ) ) ) |
12 |
11
|
oveq1d |
|- ( k = 1 -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) ) |
13 |
|
fveq2 |
|- ( k = 2 -> ( f ` k ) = ( f ` 2 ) ) |
14 |
|
fveq2 |
|- ( k = 2 -> ( g ` k ) = ( g ` 2 ) ) |
15 |
13 14
|
oveq12d |
|- ( k = 2 -> ( ( f ` k ) - ( g ` k ) ) = ( ( f ` 2 ) - ( g ` 2 ) ) ) |
16 |
15
|
oveq1d |
|- ( k = 2 -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) |
17 |
2
|
eleq2i |
|- ( f e. X <-> f e. ( RR ^m { 1 , 2 } ) ) |
18 |
|
reex |
|- RR e. _V |
19 |
|
prex |
|- { 1 , 2 } e. _V |
20 |
18 19
|
elmap |
|- ( f e. ( RR ^m { 1 , 2 } ) <-> f : { 1 , 2 } --> RR ) |
21 |
17 20
|
bitri |
|- ( f e. X <-> f : { 1 , 2 } --> RR ) |
22 |
|
id |
|- ( f : { 1 , 2 } --> RR -> f : { 1 , 2 } --> RR ) |
23 |
|
1ex |
|- 1 e. _V |
24 |
23
|
prid1 |
|- 1 e. { 1 , 2 } |
25 |
24
|
a1i |
|- ( f : { 1 , 2 } --> RR -> 1 e. { 1 , 2 } ) |
26 |
22 25
|
ffvelrnd |
|- ( f : { 1 , 2 } --> RR -> ( f ` 1 ) e. RR ) |
27 |
21 26
|
sylbi |
|- ( f e. X -> ( f ` 1 ) e. RR ) |
28 |
27
|
adantr |
|- ( ( f e. X /\ g e. X ) -> ( f ` 1 ) e. RR ) |
29 |
2
|
eleq2i |
|- ( g e. X <-> g e. ( RR ^m { 1 , 2 } ) ) |
30 |
18 19
|
elmap |
|- ( g e. ( RR ^m { 1 , 2 } ) <-> g : { 1 , 2 } --> RR ) |
31 |
29 30
|
bitri |
|- ( g e. X <-> g : { 1 , 2 } --> RR ) |
32 |
|
id |
|- ( g : { 1 , 2 } --> RR -> g : { 1 , 2 } --> RR ) |
33 |
24
|
a1i |
|- ( g : { 1 , 2 } --> RR -> 1 e. { 1 , 2 } ) |
34 |
32 33
|
ffvelrnd |
|- ( g : { 1 , 2 } --> RR -> ( g ` 1 ) e. RR ) |
35 |
31 34
|
sylbi |
|- ( g e. X -> ( g ` 1 ) e. RR ) |
36 |
35
|
adantl |
|- ( ( f e. X /\ g e. X ) -> ( g ` 1 ) e. RR ) |
37 |
28 36
|
resubcld |
|- ( ( f e. X /\ g e. X ) -> ( ( f ` 1 ) - ( g ` 1 ) ) e. RR ) |
38 |
37
|
resqcld |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. RR ) |
39 |
38
|
recnd |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC ) |
40 |
|
2ex |
|- 2 e. _V |
41 |
40
|
prid2 |
|- 2 e. { 1 , 2 } |
42 |
41
|
a1i |
|- ( f : { 1 , 2 } --> RR -> 2 e. { 1 , 2 } ) |
43 |
22 42
|
ffvelrnd |
|- ( f : { 1 , 2 } --> RR -> ( f ` 2 ) e. RR ) |
44 |
21 43
|
sylbi |
|- ( f e. X -> ( f ` 2 ) e. RR ) |
45 |
44
|
adantr |
|- ( ( f e. X /\ g e. X ) -> ( f ` 2 ) e. RR ) |
46 |
41
|
a1i |
|- ( g : { 1 , 2 } --> RR -> 2 e. { 1 , 2 } ) |
47 |
32 46
|
ffvelrnd |
|- ( g : { 1 , 2 } --> RR -> ( g ` 2 ) e. RR ) |
48 |
31 47
|
sylbi |
|- ( g e. X -> ( g ` 2 ) e. RR ) |
49 |
48
|
adantl |
|- ( ( f e. X /\ g e. X ) -> ( g ` 2 ) e. RR ) |
50 |
45 49
|
resubcld |
|- ( ( f e. X /\ g e. X ) -> ( ( f ` 2 ) - ( g ` 2 ) ) e. RR ) |
51 |
50
|
resqcld |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. RR ) |
52 |
51
|
recnd |
|- ( ( f e. X /\ g e. X ) -> ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. CC ) |
53 |
39 52
|
jca |
|- ( ( f e. X /\ g e. X ) -> ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) e. CC /\ ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) e. CC ) ) |
54 |
23 40
|
pm3.2i |
|- ( 1 e. _V /\ 2 e. _V ) |
55 |
54
|
a1i |
|- ( ( f e. X /\ g e. X ) -> ( 1 e. _V /\ 2 e. _V ) ) |
56 |
|
1ne2 |
|- 1 =/= 2 |
57 |
56
|
a1i |
|- ( ( f e. X /\ g e. X ) -> 1 =/= 2 ) |
58 |
12 16 53 55 57
|
sumpr |
|- ( ( f e. X /\ g e. X ) -> sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) |
59 |
58
|
fveq2d |
|- ( ( f e. X /\ g e. X ) -> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) |
60 |
59
|
mpoeq3ia |
|- ( f e. X , g e. X |-> ( sqrt ` sum_ k e. { 1 , 2 } ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) |
61 |
8 60
|
eqtri |
|- D = ( f e. X , g e. X |-> ( sqrt ` ( ( ( ( f ` 1 ) - ( g ` 1 ) ) ^ 2 ) + ( ( ( f ` 2 ) - ( g ` 2 ) ) ^ 2 ) ) ) ) |