Step |
Hyp |
Ref |
Expression |
1 |
|
ehl2eudisval0.e |
|- E = ( EEhil ` 2 ) |
2 |
|
ehl2eudisval0.x |
|- X = ( RR ^m { 1 , 2 } ) |
3 |
|
ehl2eudisval0.d |
|- D = ( dist ` E ) |
4 |
|
ehl2eudisval0.0 |
|- .0. = ( { 1 , 2 } X. { 0 } ) |
5 |
|
prex |
|- { 1 , 2 } e. _V |
6 |
4 2
|
rrx0el |
|- ( { 1 , 2 } e. _V -> .0. e. X ) |
7 |
5 6
|
mp1i |
|- ( F e. X -> .0. e. X ) |
8 |
1 2 3
|
ehl2eudisval |
|- ( ( F e. X /\ .0. e. X ) -> ( F D .0. ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) ) |
9 |
7 8
|
mpdan |
|- ( F e. X -> ( F D .0. ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) ) |
10 |
|
1ex |
|- 1 e. _V |
11 |
|
2ex |
|- 2 e. _V |
12 |
|
c0ex |
|- 0 e. _V |
13 |
|
xpprsng |
|- ( ( 1 e. _V /\ 2 e. _V /\ 0 e. _V ) -> ( { 1 , 2 } X. { 0 } ) = { <. 1 , 0 >. , <. 2 , 0 >. } ) |
14 |
10 11 12 13
|
mp3an |
|- ( { 1 , 2 } X. { 0 } ) = { <. 1 , 0 >. , <. 2 , 0 >. } |
15 |
4 14
|
eqtri |
|- .0. = { <. 1 , 0 >. , <. 2 , 0 >. } |
16 |
15
|
fveq1i |
|- ( .0. ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) |
17 |
|
1ne2 |
|- 1 =/= 2 |
18 |
10 12
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 ) |
19 |
17 18
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 |
20 |
16 19
|
eqtri |
|- ( .0. ` 1 ) = 0 |
21 |
20
|
a1i |
|- ( F e. X -> ( .0. ` 1 ) = 0 ) |
22 |
21
|
oveq2d |
|- ( F e. X -> ( ( F ` 1 ) - ( .0. ` 1 ) ) = ( ( F ` 1 ) - 0 ) ) |
23 |
|
eqid |
|- { 1 , 2 } = { 1 , 2 } |
24 |
23 2
|
rrx2pxel |
|- ( F e. X -> ( F ` 1 ) e. RR ) |
25 |
24
|
recnd |
|- ( F e. X -> ( F ` 1 ) e. CC ) |
26 |
25
|
subid1d |
|- ( F e. X -> ( ( F ` 1 ) - 0 ) = ( F ` 1 ) ) |
27 |
22 26
|
eqtrd |
|- ( F e. X -> ( ( F ` 1 ) - ( .0. ` 1 ) ) = ( F ` 1 ) ) |
28 |
27
|
oveq1d |
|- ( F e. X -> ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) = ( ( F ` 1 ) ^ 2 ) ) |
29 |
15
|
fveq1i |
|- ( .0. ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) |
30 |
11 12
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) |
31 |
17 30
|
mp1i |
|- ( F e. X -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) |
32 |
29 31
|
syl5eq |
|- ( F e. X -> ( .0. ` 2 ) = 0 ) |
33 |
32
|
oveq2d |
|- ( F e. X -> ( ( F ` 2 ) - ( .0. ` 2 ) ) = ( ( F ` 2 ) - 0 ) ) |
34 |
23 2
|
rrx2pyel |
|- ( F e. X -> ( F ` 2 ) e. RR ) |
35 |
34
|
recnd |
|- ( F e. X -> ( F ` 2 ) e. CC ) |
36 |
35
|
subid1d |
|- ( F e. X -> ( ( F ` 2 ) - 0 ) = ( F ` 2 ) ) |
37 |
33 36
|
eqtrd |
|- ( F e. X -> ( ( F ` 2 ) - ( .0. ` 2 ) ) = ( F ` 2 ) ) |
38 |
37
|
oveq1d |
|- ( F e. X -> ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) = ( ( F ` 2 ) ^ 2 ) ) |
39 |
28 38
|
oveq12d |
|- ( F e. X -> ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) |
40 |
39
|
fveq2d |
|- ( F e. X -> ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) |
41 |
9 40
|
eqtrd |
|- ( F e. X -> ( F D .0. ) = ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) |