| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl2eudisval0.e |
|- E = ( EEhil ` 2 ) |
| 2 |
|
ehl2eudisval0.x |
|- X = ( RR ^m { 1 , 2 } ) |
| 3 |
|
ehl2eudisval0.d |
|- D = ( dist ` E ) |
| 4 |
|
ehl2eudisval0.0 |
|- .0. = ( { 1 , 2 } X. { 0 } ) |
| 5 |
|
prex |
|- { 1 , 2 } e. _V |
| 6 |
4 2
|
rrx0el |
|- ( { 1 , 2 } e. _V -> .0. e. X ) |
| 7 |
5 6
|
mp1i |
|- ( F e. X -> .0. e. X ) |
| 8 |
1 2 3
|
ehl2eudisval |
|- ( ( F e. X /\ .0. e. X ) -> ( F D .0. ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) ) |
| 9 |
7 8
|
mpdan |
|- ( F e. X -> ( F D .0. ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) ) |
| 10 |
|
1ex |
|- 1 e. _V |
| 11 |
|
2ex |
|- 2 e. _V |
| 12 |
|
c0ex |
|- 0 e. _V |
| 13 |
|
xpprsng |
|- ( ( 1 e. _V /\ 2 e. _V /\ 0 e. _V ) -> ( { 1 , 2 } X. { 0 } ) = { <. 1 , 0 >. , <. 2 , 0 >. } ) |
| 14 |
10 11 12 13
|
mp3an |
|- ( { 1 , 2 } X. { 0 } ) = { <. 1 , 0 >. , <. 2 , 0 >. } |
| 15 |
4 14
|
eqtri |
|- .0. = { <. 1 , 0 >. , <. 2 , 0 >. } |
| 16 |
15
|
fveq1i |
|- ( .0. ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) |
| 17 |
|
1ne2 |
|- 1 =/= 2 |
| 18 |
10 12
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 ) |
| 19 |
17 18
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 |
| 20 |
16 19
|
eqtri |
|- ( .0. ` 1 ) = 0 |
| 21 |
20
|
a1i |
|- ( F e. X -> ( .0. ` 1 ) = 0 ) |
| 22 |
21
|
oveq2d |
|- ( F e. X -> ( ( F ` 1 ) - ( .0. ` 1 ) ) = ( ( F ` 1 ) - 0 ) ) |
| 23 |
|
eqid |
|- { 1 , 2 } = { 1 , 2 } |
| 24 |
23 2
|
rrx2pxel |
|- ( F e. X -> ( F ` 1 ) e. RR ) |
| 25 |
24
|
recnd |
|- ( F e. X -> ( F ` 1 ) e. CC ) |
| 26 |
25
|
subid1d |
|- ( F e. X -> ( ( F ` 1 ) - 0 ) = ( F ` 1 ) ) |
| 27 |
22 26
|
eqtrd |
|- ( F e. X -> ( ( F ` 1 ) - ( .0. ` 1 ) ) = ( F ` 1 ) ) |
| 28 |
27
|
oveq1d |
|- ( F e. X -> ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) = ( ( F ` 1 ) ^ 2 ) ) |
| 29 |
15
|
fveq1i |
|- ( .0. ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) |
| 30 |
11 12
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) |
| 31 |
17 30
|
mp1i |
|- ( F e. X -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) |
| 32 |
29 31
|
eqtrid |
|- ( F e. X -> ( .0. ` 2 ) = 0 ) |
| 33 |
32
|
oveq2d |
|- ( F e. X -> ( ( F ` 2 ) - ( .0. ` 2 ) ) = ( ( F ` 2 ) - 0 ) ) |
| 34 |
23 2
|
rrx2pyel |
|- ( F e. X -> ( F ` 2 ) e. RR ) |
| 35 |
34
|
recnd |
|- ( F e. X -> ( F ` 2 ) e. CC ) |
| 36 |
35
|
subid1d |
|- ( F e. X -> ( ( F ` 2 ) - 0 ) = ( F ` 2 ) ) |
| 37 |
33 36
|
eqtrd |
|- ( F e. X -> ( ( F ` 2 ) - ( .0. ` 2 ) ) = ( F ` 2 ) ) |
| 38 |
37
|
oveq1d |
|- ( F e. X -> ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) = ( ( F ` 2 ) ^ 2 ) ) |
| 39 |
28 38
|
oveq12d |
|- ( F e. X -> ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) |
| 40 |
39
|
fveq2d |
|- ( F e. X -> ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) |
| 41 |
9 40
|
eqtrd |
|- ( F e. X -> ( F D .0. ) = ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) |