Metamath Proof Explorer


Theorem ehlbase

Description: The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ehlval.e
|- E = ( EEhil ` N )
Assertion ehlbase
|- ( N e. NN0 -> ( RR ^m ( 1 ... N ) ) = ( Base ` E ) )

Proof

Step Hyp Ref Expression
1 ehlval.e
 |-  E = ( EEhil ` N )
2 rabid2
 |-  ( ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } <-> A. f e. ( RR ^m ( 1 ... N ) ) f finSupp 0 )
3 elmapi
 |-  ( f e. ( RR ^m ( 1 ... N ) ) -> f : ( 1 ... N ) --> RR )
4 fzfid
 |-  ( f e. ( RR ^m ( 1 ... N ) ) -> ( 1 ... N ) e. Fin )
5 0red
 |-  ( f e. ( RR ^m ( 1 ... N ) ) -> 0 e. RR )
6 3 4 5 fdmfifsupp
 |-  ( f e. ( RR ^m ( 1 ... N ) ) -> f finSupp 0 )
7 2 6 mprgbir
 |-  ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 }
8 ovex
 |-  ( 1 ... N ) e. _V
9 eqid
 |-  ( RR^ ` ( 1 ... N ) ) = ( RR^ ` ( 1 ... N ) )
10 eqid
 |-  ( Base ` ( RR^ ` ( 1 ... N ) ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) )
11 9 10 rrxbase
 |-  ( ( 1 ... N ) e. _V -> ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } )
12 8 11 ax-mp
 |-  ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 }
13 7 12 eqtr4i
 |-  ( RR ^m ( 1 ... N ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) )
14 1 ehlval
 |-  ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) )
15 14 fveq2d
 |-  ( N e. NN0 -> ( Base ` E ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) )
16 13 15 eqtr4id
 |-  ( N e. NN0 -> ( RR ^m ( 1 ... N ) ) = ( Base ` E ) )