Step |
Hyp |
Ref |
Expression |
1 |
|
ehlval.e |
|- E = ( EEhil ` N ) |
2 |
|
rabid2 |
|- ( ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } <-> A. f e. ( RR ^m ( 1 ... N ) ) f finSupp 0 ) |
3 |
|
elmapi |
|- ( f e. ( RR ^m ( 1 ... N ) ) -> f : ( 1 ... N ) --> RR ) |
4 |
|
fzfid |
|- ( f e. ( RR ^m ( 1 ... N ) ) -> ( 1 ... N ) e. Fin ) |
5 |
|
0red |
|- ( f e. ( RR ^m ( 1 ... N ) ) -> 0 e. RR ) |
6 |
3 4 5
|
fdmfifsupp |
|- ( f e. ( RR ^m ( 1 ... N ) ) -> f finSupp 0 ) |
7 |
2 6
|
mprgbir |
|- ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } |
8 |
|
ovex |
|- ( 1 ... N ) e. _V |
9 |
|
eqid |
|- ( RR^ ` ( 1 ... N ) ) = ( RR^ ` ( 1 ... N ) ) |
10 |
|
eqid |
|- ( Base ` ( RR^ ` ( 1 ... N ) ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) |
11 |
9 10
|
rrxbase |
|- ( ( 1 ... N ) e. _V -> ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } ) |
12 |
8 11
|
ax-mp |
|- ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } |
13 |
7 12
|
eqtr4i |
|- ( RR ^m ( 1 ... N ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) |
14 |
1
|
ehlval |
|- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
15 |
14
|
fveq2d |
|- ( N e. NN0 -> ( Base ` E ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) ) |
16 |
13 15
|
eqtr4id |
|- ( N e. NN0 -> ( RR ^m ( 1 ... N ) ) = ( Base ` E ) ) |