| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehlval.e |
|- E = ( EEhil ` N ) |
| 2 |
|
rabid2 |
|- ( ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } <-> A. f e. ( RR ^m ( 1 ... N ) ) f finSupp 0 ) |
| 3 |
|
elmapi |
|- ( f e. ( RR ^m ( 1 ... N ) ) -> f : ( 1 ... N ) --> RR ) |
| 4 |
|
fzfid |
|- ( f e. ( RR ^m ( 1 ... N ) ) -> ( 1 ... N ) e. Fin ) |
| 5 |
|
0red |
|- ( f e. ( RR ^m ( 1 ... N ) ) -> 0 e. RR ) |
| 6 |
3 4 5
|
fdmfifsupp |
|- ( f e. ( RR ^m ( 1 ... N ) ) -> f finSupp 0 ) |
| 7 |
2 6
|
mprgbir |
|- ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } |
| 8 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 9 |
|
eqid |
|- ( RR^ ` ( 1 ... N ) ) = ( RR^ ` ( 1 ... N ) ) |
| 10 |
|
eqid |
|- ( Base ` ( RR^ ` ( 1 ... N ) ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) |
| 11 |
9 10
|
rrxbase |
|- ( ( 1 ... N ) e. _V -> ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } ) |
| 12 |
8 11
|
ax-mp |
|- ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } |
| 13 |
7 12
|
eqtr4i |
|- ( RR ^m ( 1 ... N ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) |
| 14 |
1
|
ehlval |
|- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
| 15 |
14
|
fveq2d |
|- ( N e. NN0 -> ( Base ` E ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) ) |
| 16 |
13 15
|
eqtr4id |
|- ( N e. NN0 -> ( RR ^m ( 1 ... N ) ) = ( Base ` E ) ) |