Step |
Hyp |
Ref |
Expression |
1 |
|
ehleudis.i |
|- I = ( 1 ... N ) |
2 |
|
ehleudis.e |
|- E = ( EEhil ` N ) |
3 |
|
ehleudis.x |
|- X = ( RR ^m I ) |
4 |
|
ehleudis.d |
|- D = ( dist ` E ) |
5 |
2
|
ehlval |
|- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
6 |
5
|
fveq2d |
|- ( N e. NN0 -> ( dist ` E ) = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
7 |
4 6
|
syl5eq |
|- ( N e. NN0 -> D = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
8 |
7
|
oveqd |
|- ( N e. NN0 -> ( F D G ) = ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F D G ) = ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) ) |
10 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
11 |
1 10
|
eqeltri |
|- I e. Fin |
12 |
3
|
eleq2i |
|- ( F e. X <-> F e. ( RR ^m I ) ) |
13 |
12
|
biimpi |
|- ( F e. X -> F e. ( RR ^m I ) ) |
14 |
13
|
3ad2ant2 |
|- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> F e. ( RR ^m I ) ) |
15 |
3
|
eleq2i |
|- ( G e. X <-> G e. ( RR ^m I ) ) |
16 |
15
|
biimpi |
|- ( G e. X -> G e. ( RR ^m I ) ) |
17 |
16
|
3ad2ant3 |
|- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> G e. ( RR ^m I ) ) |
18 |
|
eqid |
|- ( RR ^m I ) = ( RR ^m I ) |
19 |
1
|
eqcomi |
|- ( 1 ... N ) = I |
20 |
19
|
fveq2i |
|- ( RR^ ` ( 1 ... N ) ) = ( RR^ ` I ) |
21 |
20
|
fveq2i |
|- ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( dist ` ( RR^ ` I ) ) |
22 |
18 21
|
rrxdsfival |
|- ( ( I e. Fin /\ F e. ( RR ^m I ) /\ G e. ( RR ^m I ) ) -> ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
23 |
11 14 17 22
|
mp3an2i |
|- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F ( dist ` ( RR^ ` ( 1 ... N ) ) ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
24 |
9 23
|
eqtrd |
|- ( ( N e. NN0 /\ F e. X /\ G e. X ) -> ( F D G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |