Metamath Proof Explorer


Theorem ehlval

Description: Value of the Euclidean space of dimension N . (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ehlval.e
|- E = ( EEhil ` N )
Assertion ehlval
|- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) )

Proof

Step Hyp Ref Expression
1 ehlval.e
 |-  E = ( EEhil ` N )
2 oveq2
 |-  ( n = N -> ( 1 ... n ) = ( 1 ... N ) )
3 2 fveq2d
 |-  ( n = N -> ( RR^ ` ( 1 ... n ) ) = ( RR^ ` ( 1 ... N ) ) )
4 df-ehl
 |-  EEhil = ( n e. NN0 |-> ( RR^ ` ( 1 ... n ) ) )
5 fvex
 |-  ( RR^ ` ( 1 ... N ) ) e. _V
6 3 4 5 fvmpt
 |-  ( N e. NN0 -> ( EEhil ` N ) = ( RR^ ` ( 1 ... N ) ) )
7 1 6 syl5eq
 |-  ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) )