Step |
Hyp |
Ref |
Expression |
1 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
2 |
|
eleigveccl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H ) |
3 |
|
eigvalcl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. CC ) |
4 |
2 3
|
jca |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) ) |
5 |
|
eigvec1 |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) |
6 |
4 5
|
jca |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) /\ ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) ) |
7 |
1 6
|
sylan |
|- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) /\ ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) ) |
8 |
2 2
|
jca |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A e. ~H ) ) |
9 |
1 8
|
sylan |
|- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A e. ~H ) ) |
10 |
|
hmop |
|- ( ( T e. HrmOp /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
11 |
10
|
3expb |
|- ( ( T e. HrmOp /\ ( A e. ~H /\ A e. ~H ) ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
12 |
9 11
|
syldan |
|- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
13 |
|
eigre |
|- ( ( ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) /\ ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( ( eigval ` T ) ` A ) e. RR ) ) |
14 |
13
|
biimpa |
|- ( ( ( ( A e. ~H /\ ( ( eigval ` T ) ` A ) e. CC ) /\ ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) /\ ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) -> ( ( eigval ` T ) ` A ) e. RR ) |
15 |
7 12 14
|
syl2anc |
|- ( ( T e. HrmOp /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. RR ) |