| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eigre.1 |  |-  A e. ~H | 
						
							| 2 |  | eigre.2 |  |-  B e. CC | 
						
							| 3 |  | oveq2 |  |-  ( ( T ` A ) = ( B .h A ) -> ( A .ih ( T ` A ) ) = ( A .ih ( B .h A ) ) ) | 
						
							| 4 |  | his5 |  |-  ( ( B e. CC /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) ) | 
						
							| 5 | 2 1 1 4 | mp3an |  |-  ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) | 
						
							| 6 | 3 5 | eqtrdi |  |-  ( ( T ` A ) = ( B .h A ) -> ( A .ih ( T ` A ) ) = ( ( * ` B ) x. ( A .ih A ) ) ) | 
						
							| 7 |  | oveq1 |  |-  ( ( T ` A ) = ( B .h A ) -> ( ( T ` A ) .ih A ) = ( ( B .h A ) .ih A ) ) | 
						
							| 8 |  | ax-his3 |  |-  ( ( B e. CC /\ A e. ~H /\ A e. ~H ) -> ( ( B .h A ) .ih A ) = ( B x. ( A .ih A ) ) ) | 
						
							| 9 | 2 1 1 8 | mp3an |  |-  ( ( B .h A ) .ih A ) = ( B x. ( A .ih A ) ) | 
						
							| 10 | 7 9 | eqtrdi |  |-  ( ( T ` A ) = ( B .h A ) -> ( ( T ` A ) .ih A ) = ( B x. ( A .ih A ) ) ) | 
						
							| 11 | 6 10 | eqeq12d |  |-  ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) ) ) | 
						
							| 12 | 1 1 | hicli |  |-  ( A .ih A ) e. CC | 
						
							| 13 |  | ax-his4 |  |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) | 
						
							| 14 | 1 13 | mpan |  |-  ( A =/= 0h -> 0 < ( A .ih A ) ) | 
						
							| 15 | 14 | gt0ne0d |  |-  ( A =/= 0h -> ( A .ih A ) =/= 0 ) | 
						
							| 16 | 2 | cjcli |  |-  ( * ` B ) e. CC | 
						
							| 17 |  | mulcan2 |  |-  ( ( ( * ` B ) e. CC /\ B e. CC /\ ( ( A .ih A ) e. CC /\ ( A .ih A ) =/= 0 ) ) -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) | 
						
							| 18 | 16 2 17 | mp3an12 |  |-  ( ( ( A .ih A ) e. CC /\ ( A .ih A ) =/= 0 ) -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) | 
						
							| 19 | 12 15 18 | sylancr |  |-  ( A =/= 0h -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) | 
						
							| 20 | 11 19 | sylan9bb |  |-  ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( * ` B ) = B ) ) | 
						
							| 21 | 2 | cjrebi |  |-  ( B e. RR <-> ( * ` B ) = B ) | 
						
							| 22 | 20 21 | bitr4di |  |-  ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) |