Step |
Hyp |
Ref |
Expression |
1 |
|
eigvalval |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
2 |
|
eleigveccl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H ) |
3 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
4 |
|
hicl |
|- ( ( ( T ` A ) e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. CC ) |
5 |
3 4
|
sylancom |
|- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. CC ) |
6 |
2 5
|
syldan |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) .ih A ) e. CC ) |
7 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
8 |
7
|
recnd |
|- ( A e. ~H -> ( normh ` A ) e. CC ) |
9 |
2 8
|
syl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( normh ` A ) e. CC ) |
10 |
9
|
sqcld |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( normh ` A ) ^ 2 ) e. CC ) |
11 |
|
eleigvec |
|- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) ) |
12 |
11
|
biimpa |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
13 |
|
sqne0 |
|- ( ( normh ` A ) e. CC -> ( ( ( normh ` A ) ^ 2 ) =/= 0 <-> ( normh ` A ) =/= 0 ) ) |
14 |
8 13
|
syl |
|- ( A e. ~H -> ( ( ( normh ` A ) ^ 2 ) =/= 0 <-> ( normh ` A ) =/= 0 ) ) |
15 |
|
normne0 |
|- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
16 |
14 15
|
bitr2d |
|- ( A e. ~H -> ( A =/= 0h <-> ( ( normh ` A ) ^ 2 ) =/= 0 ) ) |
17 |
16
|
biimpa |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
18 |
17
|
3adant3 |
|- ( ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
19 |
12 18
|
syl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
20 |
6 10 19
|
divcld |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) e. CC ) |
21 |
1 20
|
eqeltrd |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. CC ) |