| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eigvalval |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) | 
						
							| 2 |  | eleigveccl |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H ) | 
						
							| 3 |  | ffvelcdm |  |-  ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) | 
						
							| 4 |  | hicl |  |-  ( ( ( T ` A ) e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. CC ) | 
						
							| 5 | 3 4 | sylancom |  |-  ( ( T : ~H --> ~H /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. CC ) | 
						
							| 6 | 2 5 | syldan |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) .ih A ) e. CC ) | 
						
							| 7 |  | normcl |  |-  ( A e. ~H -> ( normh ` A ) e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( A e. ~H -> ( normh ` A ) e. CC ) | 
						
							| 9 | 2 8 | syl |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( normh ` A ) e. CC ) | 
						
							| 10 | 9 | sqcld |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( normh ` A ) ^ 2 ) e. CC ) | 
						
							| 11 |  | eleigvec |  |-  ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) ) | 
						
							| 12 | 11 | biimpa |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) | 
						
							| 13 |  | sqne0 |  |-  ( ( normh ` A ) e. CC -> ( ( ( normh ` A ) ^ 2 ) =/= 0 <-> ( normh ` A ) =/= 0 ) ) | 
						
							| 14 | 8 13 | syl |  |-  ( A e. ~H -> ( ( ( normh ` A ) ^ 2 ) =/= 0 <-> ( normh ` A ) =/= 0 ) ) | 
						
							| 15 |  | normne0 |  |-  ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) | 
						
							| 16 | 14 15 | bitr2d |  |-  ( A e. ~H -> ( A =/= 0h <-> ( ( normh ` A ) ^ 2 ) =/= 0 ) ) | 
						
							| 17 | 16 | biimpa |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) | 
						
							| 19 | 12 18 | syl |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) | 
						
							| 20 | 6 10 19 | divcld |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) e. CC ) | 
						
							| 21 | 1 20 | eqeltrd |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. CC ) |