| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvex |  |-  ( eigvec ` T ) e. _V | 
						
							| 2 | 1 | mptex |  |-  ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) e. _V | 
						
							| 3 |  | ax-hilex |  |-  ~H e. _V | 
						
							| 4 |  | fveq2 |  |-  ( t = T -> ( eigvec ` t ) = ( eigvec ` T ) ) | 
						
							| 5 |  | fveq1 |  |-  ( t = T -> ( t ` x ) = ( T ` x ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( t = T -> ( ( t ` x ) .ih x ) = ( ( T ` x ) .ih x ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( t = T -> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) = ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) | 
						
							| 8 | 4 7 | mpteq12dv |  |-  ( t = T -> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) | 
						
							| 9 |  | df-eigval |  |-  eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) | 
						
							| 10 | 2 3 3 8 9 | fvmptmap |  |-  ( T : ~H --> ~H -> ( eigval ` T ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |